Difference between revisions of "Manuals/calci/SKEWSYMMETRIC"
Jump to navigation
Jump to search
Line 9: | Line 9: | ||
*i.e.<math>A = (a_{ij})</math> then the skew symmetric condition is <math>(a_{ij}) = −(a_{ij})</math>. | *i.e.<math>A = (a_{ij})</math> then the skew symmetric condition is <math>(a_{ij}) = −(a_{ij})</math>. | ||
*So its diagonal values are "0". | *So its diagonal values are "0". | ||
+ | |||
+ | ==Examples== | ||
+ | #SKEWSYMMETRIC(4) | ||
+ | {| class="wikitable" | ||
+ | |- | ||
+ | | 0 || -39|| 2 || 25 | ||
+ | |- | ||
+ | |39 || 0 || 15 || 72 | ||
+ | |- | ||
+ | |-2 || -15 || 0 ||43 | ||
+ | |- | ||
+ | |-25 || -72 || -43 || 0 | ||
+ | |} |
Revision as of 15:02, 20 December 2016
SKEWSYMMETRIC(Order)
- is the order of the skew symmetric matrix.
Description
- This function shows the Skew Symmetric matrix with the given order.
- Skew Symmetric is also called Anti Symmetric or Antimetric.
- A Skew Symmetric is a square matrix which satisfies the following identity ,where is the matrix transpose.
- If the entry in the row and column is .
- i.e. then the skew symmetric condition is Failed to parse (syntax error): {\displaystyle (a_{ij}) = −(a_{ij})} .
- So its diagonal values are "0".
Examples
- SKEWSYMMETRIC(4)
0 | -39 | 2 | 25 |
39 | 0 | 15 | 72 |