Difference between revisions of "Manuals/calci/ACOSH"

From ZCubes Wiki
Jump to navigation Jump to search
 
Line 6: Line 6:
  
 
*This function gives the Inverse Hyperbolic Cosine of a number.  
 
*This function gives the Inverse Hyperbolic Cosine of a number.  
*Here 'z' is  any positive real number i.e, <math>z \ge 1</math>.  
+
*Consider 'z' is  any positive real number i.e, <math>z \ge 1</math>.  
 
*Inverse Hyperbolic sine of a number is defined by <math>Acosh(z)=\log_e(z+\sqrt{z^2-1})</math>
 
*Inverse Hyperbolic sine of a number is defined by <math>Acosh(z)=\log_e(z+\sqrt{z^2-1})</math>
 
*Also ACOSH(COSH(z))=z
 
*Also ACOSH(COSH(z))=z

Latest revision as of 16:00, 18 June 2018

ACOSH(Number)


  • is any real number.
    • ACOSH() returns the inverse hyperbolic cosine of a number.

Description

  • This function gives the Inverse Hyperbolic Cosine of a number.
  • Consider 'z' is any positive real number i.e, .
  • Inverse Hyperbolic sine of a number is defined by
  • Also ACOSH(COSH(z))=z
  • ACOSH(-2)=NAN , since z<1

Examples

ACOSH(Number)

  • Number is any positive real number.
ACOSH(z) Value
ACOSH(1) 0
ACOSH(30) 4.0940666863209
ACOSH(90) 5.192925985263806

Related Videos

Inverse Hyperbolic COS

See Also

References