Difference between revisions of "Manuals/calci/ARITHMETICSERIES"

From ZCubes Wiki
Jump to navigation Jump to search
Line 16: Line 16:
 
#ARITHMETICSERIES(200,13/7,5) = 200 201.85714285714286 203.71428571428572 205.57142857142858 207.42857142857142
 
#ARITHMETICSERIES(200,13/7,5) = 200 201.85714285714286 203.71428571428572 205.57142857142858 207.42857142857142
 
#ARITHMETICSERIES(33,-7,8) = 33 26 19 12 5 -2 -9 -16
 
#ARITHMETICSERIES(33,-7,8) = 33 26 19 12 5 -2 -9 -16
 +
#Sn=(a,r,n) => a*(1-r^n) / (1- r); Sn(1,4,5) = 341
 +
#Sn=(a,r,n) => a*(1-r^n) / (1- r); Sn#; Sn(1,4..10,5)
 +
{| id="TABLE3" class="SpreadSheet blue"
 +
|- class="even"
 +
| class=" " |
 +
|a   
 +
|r   
 +
|n   
 +
|Sn
 +
 +
|- class="odd"
 +
| class=" " |
 +
|1   
 +
|4   
 +
|5   
 +
|341
 +
|- class="even"
 +
| class="  " |
 +
1    5    5    781
 +
1    6      5      1555
 +
1    7    5    2801
 +
1    8    5    4681
 +
1    9    5    7381
 +
1    10    5      11111
  
 
==Related Videos==
 
==Related Videos==

Revision as of 01:11, 30 June 2021

ARITHMETICSERIES (Start,Difference,Numbers,OnlyNth)


  • is the starting value
  • is the difference value of the series.
  • is the positive real number.

Description

  • This function gives the Arithmetic series of the numbers.
  • An arithmetic series is the sum of a sequence {a_k}, k=1, 2, ..., in which each term is computed from the previous one by adding (or subtracting) a constant d.
  • Therefore, for k>1,
.  
  • The sum of the sequence of the first n terms is then given by

Examples

  1. ARITHMETICSERIES(10,3,6) = 10 13 16 19 22 25
  2. ARITHMETICSERIES(200,13/7,5) = 200 201.85714285714286 203.71428571428572 205.57142857142858 207.42857142857142
  3. ARITHMETICSERIES(33,-7,8) = 33 26 19 12 5 -2 -9 -16
  4. Sn=(a,r,n) => a*(1-r^n) / (1- r); Sn(1,4,5) = 341
  5. Sn=(a,r,n) => a*(1-r^n) / (1- r); Sn#; Sn(1,4..10,5)
a r n Sn
1 4 5 341

1 5 5 781 1 6 5 1555 1 7 5 2801 1 8 5 4681 1 9 5 7381 1 10 5 11111

Related Videos

Arithmetic Series

See Also

References