Difference between revisions of "Manuals/calci/Pascal Triangle Fun"
Jump to navigation
Jump to search
| Line 67: | Line 67: | ||
PASCALTRIANGLE(10,true) | PASCALTRIANGLE(10,true) | ||
<pre> | <pre> | ||
| + | |||
| + | ==Lucas, Fibonacci, Golden Ratio Relationship == | ||
| + | |||
| + | <pre> | ||
| + | FIBONACCI(50) | ||
| + | |||
| + | LUCAS(50) | ||
| + | |||
| + | FIBONACCI(50) | ||
| + | .pieces(2) | ||
| + | .map(r=>r[1]/r[0]) | ||
| + | |||
| + | GOLDENRATIO() | ||
| + | |||
| + | LUCAS(50) | ||
| + | .pieces(2) | ||
| + | .map(r=>r[1]/r[0]) | ||
| + | |||
| + | ROUND((GOLDENRATIO())^(1..10)) | ||
| + | |||
| + | [(1+√5)/2,(1+√5)/2] | ||
| + | |||
| + | ops.on; | ||
| + | [(1+√5d100)/2,(1-√5d100)/2] | ||
| + | |||
| + | </pre> | ||
Revision as of 21:25, 6 August 2020
Pascal Triangle Fun
Sierpiński triangle
//with 32
m=32;
pt=PASCALTRIANGLE(m).$(x=>x%2)
a=pt
.map(
function (r,i)
{
var prefix= (REPEATCHAR(" ",(2*m-(2*i+1))/2).split(""));
return(
prefix
.concat(r.join(", ,").split(","))
.concat(prefix)
)
}
);
(a);
Fibonacci and Pascal Triangle
FIBONNACI(100)
b=PASCALTRIANGLE(100)
b.map(
function calcfib(r,i,d)
{
var fib=0;
var j=0;
for(var xi=i;xi>=0;xi--)
{
fib+=isNaN(d[xi][j])?0:d[xi][j];
j++;
}
return(fib)
}
)
Pretty Pascal Triangle
m=10;
pt=PASCALTRIANGLE(m)
pt
.map(
function (r,i)
{
var prefix= (REPEATCHAR(" ",(2*m-(2*i+1))/2).split(""));
return(
prefix
.concat(r.join(", ,").split(","))
.concat(prefix)
)
}
);
<pre>
Now we can use:
<pre>
PASCALTRIANGLE(10,true)
<pre>
==Lucas, Fibonacci, Golden Ratio Relationship ==
<pre>
FIBONACCI(50)
LUCAS(50)
FIBONACCI(50)
.pieces(2)
.map(r=>r[1]/r[0])
GOLDENRATIO()
LUCAS(50)
.pieces(2)
.map(r=>r[1]/r[0])
ROUND((GOLDENRATIO())^(1..10))
[(1+√5)/2,(1+√5)/2]
ops.on;
[(1+√5d100)/2,(1-√5d100)/2]