Difference between revisions of "Manuals/calci/KRUSKALWALLISTEST"

From ZCubes Wiki
Jump to navigation Jump to search
Line 36: Line 36:
 
**7.State Conclusion:To be significant, our obtained H has to be equal to or LESS than this critical value.
 
**7.State Conclusion:To be significant, our obtained H has to be equal to or LESS than this critical value.
 
==Examples==
 
==Examples==
1.
+
 
 
  {| class="wikitable"
 
  {| class="wikitable"
 
  |+Spreadsheet
 
  |+Spreadsheet
 
  |-
 
  |-
  !  !! A !! B  
+
  !  !! A !! B !! C
 
  |-
 
  |-
 
  ! 1  
 
  ! 1  

Revision as of 14:55, 11 August 2020

KRUSKALWALLISTEST (SampleDataByGroup,ConfidenceLevel,NewTableFlag)


  • is the set of values to find the test statistic.
  • is the value between 0 and 1.
  • is either TRUE or FALSE.


Description

  • This function gives the test statistic value of the Kruskal Wallis test.
  • It is one type of Non parametric test.
  • It is a logical extension of the Wilcoxon-Mann-Whitney Test.
  • The parametric equivalent of the Kruskal-Wallis test is the one-way analysis of variance (ANOVA).
  • This test is used for comparing more than two sample that are independent or not related.
  • It is used to test the null hypothesis that all populations have identical distribution functions against the alternative hypothesis that at least two of the samples differ only with respect to Median.
  • Kruskal–Wallis is also used when the examined groups are of unequal size.
  • When the Kruskal-Wallis test leads to significant results, then at least one of the samples is different from the other samples.
  • The test does not identify where the differences occur or how many differences actually occur.
  • Since it is a non-parametric method, the Kruskal–Wallis test does not assume a normal distribution of the residuals, unlike the analogous one-way analysis of variance.
  • However, the test does assume an identically shaped and scaled distribution for each group, except for any difference in medians.
  • The Kruskal Wallis test data are having the following properties:
  • 1.The data points must be independent from each other.
  • 2.The distributions do not have to be normal and the variances do not have to be equal.
  • 3.The data points must be more than five per sample.
  • 4.All individuals must be selected at random from the population.
  • 5.All individuals must have equal chance of being selected.
  • 6.Sample sizes should be as equal as possible but some differences are allowed.
  • Steps for Kruskal Wallis Test:
    • 1. Define Null and Alternative Hypotheses:
  • Null Hypotheses:There is no difference between the conditions.
  • Alternative Hypotheses:There is a difference between the conditions.
    • 2.State Alpha:Alpha=0.05.
    • 3.Calculate degrees of freedom:df = k – 1, where k = number of groups.
    • 4.State Decision Rule:From the Chi squared table calculate the critical value.
  • Suppose the is greater than the critical value then reject the null hypothesis
    • 5.Calculate the Test Statistic:
    • 6.State Results:In this step we have to take a decision of null hypothesis either accept or reject depending on the critical value table.
    • 7.State Conclusion:To be significant, our obtained H has to be equal to or LESS than this critical value.

Examples

Spreadsheet
A B C
1 Temperature Drying Time(Hrs)
2 54 8
3 63 6
4 75 3
5 82 1
=REGRESSIONANALYSIS(A2:A5,B2:B5,0.65,0)

REGRESSION ANALYSIS OUTPUT

Summary Output
Regression Statistics
Multiple R 0.9989241524588297
R Square 0.9978494623655914
ADJUSTEDRSQUARE 0.996774193548387
STANDARDERROR 0.7071067811865526
OBSERVATIONS 4
ANOVA
DF SS MS F SIGNIFICANCE F
REGRESSION 1 464 464 927.9999999999868 0.001075847541170237
RESIDUAL 2 1.0000000000000142 0.5000000000000071
TOTAL 3 465
COEFFICIENTS STANDARD ERROR T STAT P-VALUE LOWER 95% UPPER 95%
INTERCEPT 86.5 0.6885767430246896 125.62143708199342 0.00006336233990811291 83.53729339698282 89.46270660301718
INDEP1 -4.000000000000007 0.1313064328597235 -30.46309242345547 0.0010758475411701829 -4.564965981777561 -3.4350340182224532

Related Videos

Kruskal Wallis Test

See Also

References