Difference between revisions of "Manuals/calci/BETADIST"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font size="3"><font face="Times New Roman">'''BETADIST''' ('''N''',''' alpha, beta, X, Y''')</font></font> <font ...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''BETADIST(x,alpha,beta,a,b)'''</div><br/>
 +
*x is the value between a and b,
 +
*alpha and beta are the value of the shape parameter
 +
*a & b the lower and upper limit to the interval of x.
  
<font size="3"><font face="Times New Roman">'''BETADIST''' ('''N''',''' alpha, beta, X, Y''')</font></font>
+
==Description==
 +
*This function gives the cumulative beta probability density function.
 +
*The beta distribution is a family of continuous probability distributions defined on the interval [0, 1] parameterized by two positive shape parameters, denoted by α and ß.
 +
*The Beta distribution is also known as the beta distribution of the first kind.
 +
*In BETADIST(x,alpha,beta,a,b) x is the value between a and b, alpha is the value of the shape parameter,beta is the value of the shape parameter and a and b(optional) are  the lower and upper limit to the interval of x.
 +
*Normally x is lies between the limit a and b, suppose when we are omitting  the a and b value by default x value with in 0 and 1.
 +
*The probability density function of the beta distribution is:f(x)=x^ α-1(1-x)^ ß-1/B(α,ß), where 0≤x≤1; α,ß >0 and B(α,ß) is the Beta function.
 +
*The formula for the cumulative  beta distribution is  called the incomplete beta function ratio and it is denoted by Ix and is defined as
 +
F(x)=Ix(α,ß)=∫ limit 0 to x t^α−1(1−t)ß−1dt  /B(p,q),  where 0≤x≤1; α,ß>0 and B(α,ß) is the Beta function.
 +
*This function will give the result as error when
 +
1. Any one of the arguments are non-numeric
 +
2.alpha or beta<=0
 +
3.x<a ,x>b, or a=b
 +
4. we are not mentioning the limit values a and b, by default it will consider the standard cumulative beta distribution, a= 0 and b= 1.
  
<font size="3"><font face="Times New Roman">'''Where N''' is the value between X and Y </font></font>
+
==Examples==
 +
BETADIST(0.4,8,10) = 0.359492343(Excel)
 +
                                  =NAN(calci)
 +
BETADIST(3,5,9,2,6) = 0.20603810250
 +
BETADIST(9,4,2,8,11) = 0.04526748971
 +
BETADIST(5,-1,-2,4,7) = NAN
  
<font size="3"><font face="Times New Roman">'''Alpha''' is a parameter of the distribution.</font></font>
+
==See Also==
 +
*[[Manuals/calci/BETAINV  BETAINV]]
  
<font size="3"><font face="Times New Roman">'''Beta''' is a parameter of the distribution.</font></font>
 
  
<font size="3"><font face="Times New Roman">'''X''' is an optional lower bound to the interval of N.</font></font>
+
==References==
 
+
[http://en.wikipedia.org/wiki/Beta_distribution Beta Distribution]
<font size="3"><font face="Times New Roman">'''Y''' is an optional upper bound to the interval of N.</font></font>
 
 
 
</div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left">
 
 
 
<font size="3"><font face="Times New Roman">It calculates the cumulative beta probability density function. </font></font>
 
 
 
</div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left">
 
 
 
<font size="3">·</font>        <font size="3"><font face="Times New Roman">When any of the argument is non numeric, BETADIST shows nothing. </font></font>
 
 
 
<font size="3">·</font>        <font face="Times New Roman"><font size="3">When alpha is less than or equal to 0 or beta is less than or equal to 0, BETADIST displays NaN.</font></font>
 
 
 
<font size="3">·</font>        <font size="3"><font face="Times New Roman">When N is less than X and is greater than Y, or  X=Y ,BETADIST displays 0. </font></font>
 
 
 
<font size="3">·</font>        <font size="3"><font face="Times New Roman">When we omit values for X and Y, BETADIST displays NaN. </font></font>
 
 
 
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">BETADIST</div></div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left"><div>
 
 
 
{| id="TABLE1" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| class="            " | Column2
 
| class="sshl_f" | Column3
 
| class="sshl_f" | Column4
 
| class="sshl_f" | Column5
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 3
 
| class="sshl_f" | 5
 
| class="sshl_f" | 9
 
| class="sshl_f" | 1
 
| class="sshl_f" | 6
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 0.646958
 
| class="sshl_f" |
 
| class="  " |
 
| class="  " |
 
| class="sshl_f    " |
 
<div id="2Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
|- class="odd"
 
| Row3
 
| class="sshl_f  SelectTD SelectTD" |
 
<div id="2Space_Handle" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="2Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| class="sshl_f" |
 
|
 
|
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
|
 
|
 
|- class="odd"
 
| class="sshl_f" | Row5
 
| class="sshl_f" |
 
| class="  " |
 
|
 
|
 
|
 
|- class="even"
 
| class=" " | Row6
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
|
 
|
 
|}
 
 
 
<div align="left"></div>''''''</div></div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left">i.e. = BETADIST (3, 5, 9,1,6 ) is 0.647</div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left"></div>
 
----
 

Revision as of 03:02, 3 December 2013

BETADIST(x,alpha,beta,a,b)


  • x is the value between a and b,
  • alpha and beta are the value of the shape parameter
  • a & b the lower and upper limit to the interval of x.

Description

  • This function gives the cumulative beta probability density function.
  • The beta distribution is a family of continuous probability distributions defined on the interval [0, 1] parameterized by two positive shape parameters, denoted by α and ß.
  • The Beta distribution is also known as the beta distribution of the first kind.
  • In BETADIST(x,alpha,beta,a,b) x is the value between a and b, alpha is the value of the shape parameter,beta is the value of the shape parameter and a and b(optional) are the lower and upper limit to the interval of x.
  • Normally x is lies between the limit a and b, suppose when we are omitting the a and b value by default x value with in 0 and 1.
  • The probability density function of the beta distribution is:f(x)=x^ α-1(1-x)^ ß-1/B(α,ß), where 0≤x≤1; α,ß >0 and B(α,ß) is the Beta function.
  • The formula for the cumulative beta distribution is called the incomplete beta function ratio and it is denoted by Ix and is defined as

F(x)=Ix(α,ß)=∫ limit 0 to x t^α−1(1−t)ß−1dt /B(p,q), where 0≤x≤1; α,ß>0 and B(α,ß) is the Beta function.

  • This function will give the result as error when
1. Any one of the arguments are non-numeric
2.alpha or beta<=0
3.x<a ,x>b, or a=b
4. we are not mentioning the limit values a and b, by default it will consider the standard cumulative beta distribution, a= 0 and b= 1.

Examples

BETADIST(0.4,8,10) = 0.359492343(Excel)

                                 =NAN(calci)

BETADIST(3,5,9,2,6) = 0.20603810250 BETADIST(9,4,2,8,11) = 0.04526748971 BETADIST(5,-1,-2,4,7) = NAN

See Also


References

Beta Distribution