Difference between revisions of "Manuals/calci/FISHER"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''FISHER'''('''n''') '''n'''   is a numeric value for which  the transformation is done. </div> ---- <div...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''FISHER(x)'''</div><br/>
 +
*<math>x</math> is the number.
 +
==Description==
 +
*This function gives the value of Fisher transformation at x.
 +
*Fisher transformation is used  to test the hypothesis  of two  correlations.
 +
*It is mainly associated with the Pearson product-moment correlation coefficient for bivariate normal observations.
 +
*In FISHER(X), x is the number which ranges between -1 to +1.
 +
*The transformaton is defined by : z=1/2  ln(1+x/1-x)= arctanh(x), where "ln" is the natural logarithm function and "arctanh" is the inverse hyperbolic function.
 +
*This function will give the result as error when:
 +
#x is nonnumeric
 +
#x<=-1 or x>=1 .
  
'''FISHER'''('''n''')
+
==Examples==
  
'''n'''   is a numeric value for which  the transformation is done.
+
#FISHER(0.5642)=0.6389731838284958
 +
#FISHER(0)=0
 +
#FISHER(-0.3278)=-0.3403614004970268
 +
#FISHER(1)=Infinity
 +
#FISHER(-1)=Infinity
  
</div>
+
==See Also==
----
+
*[[Manuals/calci/CORREL  | CORREL ]]
<div id="1SpaceContent" class="zcontent" align="left">
+
*[[Manuals/calci/FISHERINV  | FISHERINV ]]
  
It calculates the Fisher transformation at n.
 
  
</div>
+
==References==
----
+
[http://en.wikipedia.org/wiki/Bessel_function| Bessel Function]
<div id="7SpaceContent" class="zcontent" align="left">
 
 
 
·          For nonnumeric value Fisher shows error.
 
 
 
·          When n is less than or equal to 1or greater than or equal to -1 Fisher displays infinity..
 
 
 
·          The equation for  Fisher transformation is:
 
 
 
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">FISHER</div></div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left"><font size="3"><font face="Times New Roman">''' <font size="3"><font face="Times New Roman">AVEDEV (N1, N2...)</font></font> <font size="3"><font face="Times New Roman">Where N1, N 2 ...   are positive integers.</font></font> '''</font></font></div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left">
 
 
 
<font size="3"><font face="Times New Roman">Let’s see an example in (Column1 Row 1)</font></font>
 
 
 
<font size="3">FISHER (n)</font>
 
 
 
<font size="3">FISHER (C1R1)</font>
 
 
 
<font size="3">i.e. =FISHER (.65) is 0.7753</font>
 
 
 
</div>
 
----
 
<div id="9SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE1" class="SpreadSheet blue"
 
|- class="even"
 
| class="    " |
 
| Column1
 
| class="      " | Column2
 
| class="  " | Column3
 
| class="  " | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f " | .65
 
| class="sshl_f" | 0.775299
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" |
 
| class="SelectTD" |
 
<div id="9Space_Handle" class="zhandles" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="9Space_Copy" class="zhandles" title="Click and Drag over to AutoFill other cells."></div><div id="9Space_Drag" class="zhandles" title="Click and Drag to Move/Copy Area.">[[Image:copy-cube.gif]]</div>
 
| class="  " |
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row6
 
| class="sshl_f  " |
 
| class="sshl_f  " |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 

Revision as of 06:22, 9 December 2013

FISHER(x)


  • is the number.

Description

  • This function gives the value of Fisher transformation at x.
  • Fisher transformation is used to test the hypothesis of two correlations.
  • It is mainly associated with the Pearson product-moment correlation coefficient for bivariate normal observations.
  • In FISHER(X), x is the number which ranges between -1 to +1.
  • The transformaton is defined by : z=1/2 ln(1+x/1-x)= arctanh(x), where "ln" is the natural logarithm function and "arctanh" is the inverse hyperbolic function.
  • This function will give the result as error when:
  1. x is nonnumeric
  2. x<=-1 or x>=1 .

Examples

  1. FISHER(0.5642)=0.6389731838284958
  2. FISHER(0)=0
  3. FISHER(-0.3278)=-0.3403614004970268
  4. FISHER(1)=Infinity
  5. FISHER(-1)=Infinity

See Also


References

Bessel Function