Difference between revisions of "Manuals/calci/GAMMADIST"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left">  <font color="#000000">'''GAMMADIST(X, Alpha, Beta, Cum)'''</font> <br /> <font color="#000000">Where X is the...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left"> 
+
<div style="font-size:30px">'''GAMMADIST(x,alpha,beta,cu)'''</div><br/>
 +
*Where 'x' is the value of the distribution,alpha and beta are the value of the parameters and cu is the logical value like true or false.
  
<font color="#000000">'''GAMMADIST(X, Alpha, Beta, Cum)'''</font>
+
==Description==
 +
*This function gives the value of the gamma distribution.
 +
*The gamma distribution can be used in a queuing models like The amount of rainfall accumulated in a reservoir. *This distribution is the continuous probability distribution with two parameters α&ß.
 +
*In  GAMMADIST(x,alpha,beta,cu), x is the value of the distribution, alpha is called shape parameter and beta is the rate parameter of the distribution and cu is the logical value like TRUE or FALSE.
 +
*If it is TRUE then this function gives the cumulative distribution value or it is FALSE then it gives the probability density function.
 +
*The gamma function is defined by  Gamma(t) = integral 0 to infinity  x^{t-1} e^{-x} dx.
 +
*And it is for all complex numbers except the negative integers and zero.
 +
*The probability density function of Gamma function using Shape, rate parameters is: f(x; α,ß)=[x^{α-1} e^-{x/ß}]/ß^α Gamma(α), for x,α &ß>0, where e is the natural number(e=2.71828...),  α  is the number of occurrences of an event, and Gamma(α) is the Gamma function.
 +
*The standard gamma probability density function is: f(x, α)=[x^{α-1} e^-x]/Gamma(α).
 +
*The  cumulative distribution  function of Gamma is  F(x;α,ß)=[Gamma(in symbol V)(α, x/ß)]/Gamma(α), or F(x;α,ß)= e^-{x/ß} Summation i=k to infinity 1/i! (x/ß)^i for any positive integer k.
 +
*When alpha is a positive integer, then the distribution is called Erlang distribution.
 +
*If the shape parameter α is held fixed, the resulting one-parameter family of distributions is a natural exponential family.
 +
*For a positive integer n, when alpha = n/2, beta = 2, and cu= TRUE, GAMMADIST returns (1 - CHIDIST(x)) with n degrees of freedom.
 +
*This function shows the result as error when 1.Any one of the argument is non numeric
 +
2. x<0, alpha<=0 or beta<=0
 +
==Examples==
  
<br />
+
#EDATE("1/1/1910",2)=Tue Mar 01 1910 00:00:00 GMT +0530 (Indian standard time)
 +
#EDATE("5/4/1897",5)=Mon Tue 04 189700:00:00 GMT +0530 (Indian standard time)
 +
#EDATE("11/31/1999",3)=Wed Mar 01 200000:00:00 GMT +0530 (Indian standard time)
 +
#EDATE("6/6/1979",-2)=Fri Apr 06 197900:00:00 GMT +0530 (Indian standard time)
 +
#EDATE("4/15/1950",-6)=Sat  Oct  15  194900:00:00 GMT +0530 (Indian standard time)
 +
==See Also==
 +
*[[Manuals/calci/DATE  | DATE ]]
 +
*[[Manuals/calci/DAYS360  | DAYS360]]
 +
*[[Manuals/calci/DATEVALUE  | DATEVALUE]]
  
<font color="#000000">Where X is the value to evaluate the distribution, Alpha and Beta are the parameters and Cum is the logical value.</font>
+
==References==
 
+
[http://en.wikipedia.org/wiki/Bessel_function| Bessel Function]
</div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left"><font color="#000000">This function returns the gamma distribution. It is commonly used in queuing analysis.</font></div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left">
 
 
 
<font size="3" color="#000000"> </font>
 
 
 
* <font color="#000000">X, Alpha and Beta should be numeric.</font>
 
* <font color="#000000">GAMMADIST shows the error value when X &lt; 0, Alpha ≤ 0 or Beta ≤ 0</font>
 
 
 
<font size="3" color="#000000">The equation for the gamma probability density function is: </font>
 
 
 
[[Image:default.aspx|Equation]]
 
 
 
The standard gamma probability density function is:
 
 
 
[[Image:default.aspx|Equation]]
 
 
 
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">GAMMADIST </div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left"> 
 
 
 
<font color="#000000">GAMMADIST(X, Alpha, Beta, Cum)</font>
 
 
 
<font color="#000000">'''B'''</font>
 
 
 
<font color="#000000">9.00002561</font>
 
 
 
<font color="#000000">8</font>
 
 
 
<font color="#000000">2</font>
 
 
 
<br />
 
 
 
<font color="#000000"><nowiki>=GAMMADIST(B2,B3,B4,FALSE) is 0.041182</nowiki></font>
 
 
 
<font color="#000000"><nowiki>=GAMMADIST(B2,B3,B4,TRUE) is 0.086593</nowiki></font>
 
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left"><div>
 
 
 
{| id="TABLE1" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| class="        " | Column2
 
| class="    " | Column3
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 9.00002561
 
| class="sshl_f" | 0.041182
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 8
 
| class="sshl_f" | 0.086593
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_f" | 2
 
| class="SelectTD" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
|- class="odd"
 
| class="sshl_f" | Row5
 
|
 
| class="  " |
 
|
 
|- class="even"
 
| class=" " | Row6
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
|}
 
 
 
<div align="left"></div>''''''</div></div>
 
----
 

Revision as of 04:17, 3 December 2013

GAMMADIST(x,alpha,beta,cu)


  • Where 'x' is the value of the distribution,alpha and beta are the value of the parameters and cu is the logical value like true or false.

Description

  • This function gives the value of the gamma distribution.
  • The gamma distribution can be used in a queuing models like The amount of rainfall accumulated in a reservoir. *This distribution is the continuous probability distribution with two parameters α&ß.
  • In GAMMADIST(x,alpha,beta,cu), x is the value of the distribution, alpha is called shape parameter and beta is the rate parameter of the distribution and cu is the logical value like TRUE or FALSE.
  • If it is TRUE then this function gives the cumulative distribution value or it is FALSE then it gives the probability density function.
  • The gamma function is defined by Gamma(t) = integral 0 to infinity x^{t-1} e^{-x} dx.
  • And it is for all complex numbers except the negative integers and zero.
  • The probability density function of Gamma function using Shape, rate parameters is: f(x; α,ß)=[x^{α-1} e^-{x/ß}]/ß^α Gamma(α), for x,α &ß>0, where e is the natural number(e=2.71828...), α is the number of occurrences of an event, and Gamma(α) is the Gamma function.
  • The standard gamma probability density function is: f(x, α)=[x^{α-1} e^-x]/Gamma(α).
  • The cumulative distribution function of Gamma is F(x;α,ß)=[Gamma(in symbol V)(α, x/ß)]/Gamma(α), or F(x;α,ß)= e^-{x/ß} Summation i=k to infinity 1/i! (x/ß)^i for any positive integer k.
  • When alpha is a positive integer, then the distribution is called Erlang distribution.
  • If the shape parameter α is held fixed, the resulting one-parameter family of distributions is a natural exponential family.
  • For a positive integer n, when alpha = n/2, beta = 2, and cu= TRUE, GAMMADIST returns (1 - CHIDIST(x)) with n degrees of freedom.
  • This function shows the result as error when 1.Any one of the argument is non numeric

2. x<0, alpha<=0 or beta<=0

Examples

  1. EDATE("1/1/1910",2)=Tue Mar 01 1910 00:00:00 GMT +0530 (Indian standard time)
  2. EDATE("5/4/1897",5)=Mon Tue 04 189700:00:00 GMT +0530 (Indian standard time)
  3. EDATE("11/31/1999",3)=Wed Mar 01 200000:00:00 GMT +0530 (Indian standard time)
  4. EDATE("6/6/1979",-2)=Fri Apr 06 197900:00:00 GMT +0530 (Indian standard time)
  5. EDATE("4/15/1950",-6)=Sat Oct 15 194900:00:00 GMT +0530 (Indian standard time)

See Also

References

Bessel Function