Difference between revisions of "Manuals/calci/IMSUB"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify"> Syntax </div></div> ---- <div id="4SpaceContent" align="left"><div class="ZEditBox" align=...")
 
Line 1: Line 1:
<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
<div style="font-size:30px">'''IMSUB(z1,z2)'''</div><br/>
 +
*<math>z1 and z2</math> are the complex numbers is of the form <math>a+ib</math>
 +
*<math>n</math> is the power value
  
Syntax
+
==Description==
  
</div></div>
+
*This function gives the difference of the two complex numbers.
----
+
*IMSUB(z1,z2), Where <math> z1,z2</math>  are  the complex number is in the form of <math>a+ib</math>.
<div id="4SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
*<math> a </math>& <math>b</math> are the real numbers. <math>i</math> imaginary unit .<math>i=\sqrt{-1}</math>.
 +
* Let z1=a+ib and z2=c+id.
 +
*The difference of two complex number is:<math>(a+ib)-(c+id)=(a-c)+(b-d)i </math>, where a,b,c and d are real numbers.
 +
*We can use COMPLEX function to convert  real and imaginary number in to a complex number.
  
Remarks
 
  
</div></div>
+
==Examples==
----
+
#IMSUB("6+4i","5+3i")=1+1i
<div id="2SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
#IMSUB("3+4i","6+7i")=-3-3i
 +
#IMSUB("8","9+10i")=-1-10i
 +
#IMSUB("5+7i","3")=2+7i
  
Examples
+
==See Also==
 +
*[[Manuals/calci/IMREAL  | IMREAL ]]
 +
*[[Manuals/calci/IMSUM  | IMSUM ]]
 +
*[[Manuals/calci/IMAGINARY  | IMAGINARY ]]
 +
*[[Manuals/calci/COMPLEX  | COMPLEX ]]
  
</div></div>
 
----
 
<div id="8SpaceContent" align="left"><div class="ZEditBox" align="justify">'''<font face="Times New Roman">''''''''''''<font size="6"> </font>''' '''''''''</font>'''</div></div>
 
----
 
<div id="11SpaceContent" align="left"><div class="ZEditBox mceEditable" align="justify">
 
  
<font size="5">Description</font>
+
==References==
 
+
[http://en.wikipedia.org/wiki/Binary_logarithm Binary Logarithm]
</div></div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">This function calculates the difference of two complex numbers in a+bi or a + bj text format.</font></font></font>
 
 
 
</div></div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"><font size="6"> '''<font face="Arial">IMSUB</font>'''</font></div></div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">The difference of two complex numbers is: </font></font></font>
 
 
 
<font color="#484848">(a+bi)-(c+di)=(a-c)+(b-d)i</font>
 
 
 
</div></div>
 
----
 
<div id="6SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''IMSUB'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''IN1'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">,</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''IN2'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">)</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">where IN1</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2"> and IN2 are the complex numbers.</font></font></font>
 
 
 
</div></div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 9+2i
 
| class="                        " |
 
|
 
|
 
|- class="even"
 
| class=" " | Row2
 
| class="f52543                                  " |
 
| class="SelectTD" |
 
|
 
|
 
|- class="odd"
 
| Row3
 
|
 
|
 
|
 
|
 
|- class="even"
 
| Row4
 
|
 
|
 
|
 
|
 
|- class="odd"
 
| class=" " | Row5
 
|
 
|
 
|
 
|
 
|- class="even"
 
| Row6
 
|
 
|
 
|
 
|
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left">
 
 
 
Let's see an example
 
 
 
I.e. =IMSUB(“12+3i”,”3+i”) is 9+2i
 
 
 
</div>
 
----
 

Revision as of 22:41, 18 December 2013

IMSUB(z1,z2)


  • are the complex numbers is of the form
  • is the power value

Description

  • This function gives the difference of the two complex numbers.
  • IMSUB(z1,z2), Where are the complex number is in the form of .
  • & are the real numbers. imaginary unit ..
  • Let z1=a+ib and z2=c+id.
  • The difference of two complex number is:, where a,b,c and d are real numbers.
  • We can use COMPLEX function to convert real and imaginary number in to a complex number.


Examples

  1. IMSUB("6+4i","5+3i")=1+1i
  2. IMSUB("3+4i","6+7i")=-3-3i
  3. IMSUB("8","9+10i")=-1-10i
  4. IMSUB("5+7i","3")=2+7i

See Also


References

Binary Logarithm