Difference between revisions of "Manuals/calci/MDETERM"
Jump to navigation
Jump to search
(Created page with "<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify"> Syntax </div></div> ---- <div id="4SpaceContent" align="left"><div class="ZEditBox" align=...") |
|||
Line 1: | Line 1: | ||
− | <div | + | <div style="font-size:30px">'''MDETERM(arr)'''</div><br/> |
+ | *where <math>arr</math> is the array of numeric elements | ||
− | |||
− | + | ==Description== | |
− | ---- | + | *This function gives the determinant value of a matrix. |
− | + | *To calculate the determinant of the matrix we can choose only square matrix. | |
+ | *i.e., Number rows and number of columns should be equal.Determinant of the identity matrix is always 1. *Determinant of the matrix A is denoted by det(A) or |A|. | ||
+ | *Let A be 2x2 matrix with the elements A=[a b | ||
+ | c d]. | ||
+ | *Then det(A)=ad-bc, where a,b,c,d all are real numbers. | ||
+ | *Let A be the 3x3 matrix with the elements A=[a b c | ||
+ | d e f | ||
+ | g h i]. | ||
+ | Then |A|=a|e f -b|d f +c|d e | ||
+ | h i| g i| g h| | ||
+ | =a(ei-fh) -b(di-fg)+c(dh-eg) | ||
+ | *Let A be a square matrix of order n. Write A = (a_ij), | ||
+ | *Where aij is the entry on the i number of rows and j number of columns and i=1 to n &j=1 to n. | ||
+ | *For any i and j, set Aij (called the cofactors), then the general formula for determinant of the matrix A , |A|=summation (j=1 to n)a_ij A_ij, for any fixed i. | ||
+ | Also|A|=summation (i=1 to n)a_ij A_ij, for any fixed j. | ||
+ | *This function will give the result as error when | ||
+ | 1. Any one of the element in array is empty or contain non-numeric | ||
+ | 2. Number of rows is not equal to number of columns | ||
− | + | ==Examples== | |
− | |||
− | |||
− | |||
− | |||
− | + | ==See Also== | |
− | |||
− | |||
− | |||
− | |||
− | + | ==References== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Revision as of 03:30, 31 December 2013
MDETERM(arr)
- where is the array of numeric elements
Description
- This function gives the determinant value of a matrix.
- To calculate the determinant of the matrix we can choose only square matrix.
- i.e., Number rows and number of columns should be equal.Determinant of the identity matrix is always 1. *Determinant of the matrix A is denoted by det(A) or |A|.
- Let A be 2x2 matrix with the elements A=[a b
c d].
- Then det(A)=ad-bc, where a,b,c,d all are real numbers.
- Let A be the 3x3 matrix with the elements A=[a b c
d e f g h i].
Then |A|=a|e f -b|d f +c|d e
h i| g i| g h| =a(ei-fh) -b(di-fg)+c(dh-eg)
- Let A be a square matrix of order n. Write A = (a_ij),
- Where aij is the entry on the i number of rows and j number of columns and i=1 to n &j=1 to n.
- For any i and j, set Aij (called the cofactors), then the general formula for determinant of the matrix A , |A|=summation (j=1 to n)a_ij A_ij, for any fixed i.
Also|A|=summation (i=1 to n)a_ij A_ij, for any fixed j.
- This function will give the result as error when
1. Any one of the element in array is empty or contain non-numeric 2. Number of rows is not equal to number of columns