Difference between revisions of "Manuals/calci/SECH"
Jump to navigation
Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> SECH(SomeNumber) where '''SomeNumber''' is any real number </div> ---- <div id="1SpaceContent" class="zconte...") |
|||
Line 1: | Line 1: | ||
− | <div | + | <div style="font-size:30px">'''SECH(z)'''</div><br/> |
+ | * where z is any real number | ||
+ | ==Description== | ||
− | SECH( | + | This function gives the hyperbolic secant of 'z',also it is called as circular function.SECH is the reciprocal of COSH function.SECH z=(cosh z)^-1.i.e. 2/e^z+e^-z or SEC iz.where 'I' is the imginary unit and i=sqrt(-1).Also relation between hyperbolic &trignometric function is |
+ | sec(iz)=sechz&sec(iz)=sec z | ||
− | + | == Examples == | |
+ | '''SECH(z)''' | ||
+ | *'''z''' is any real number. | ||
− | + | {|id="TABLE1" class="SpreadSheet blue" | |
− | |||
− | |||
− | + | |- class="even" | |
+ | |'''SECH(z)''' | ||
+ | |'''Value(Radian)''' | ||
− | + | |- class="odd" | |
− | + | | SECH(0) | |
− | + | | 1 | |
− | + | |- class="even" | |
+ | | SECH(10) | ||
+ | | 0.00009079985933781728 | ||
− | + | |- class="odd" | |
− | + | | SECH(7) | |
− | + | | SECH(7)=0.001823762414 | |
− | + | |} | |
− | SECH | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ==See Also== | |
− | + | *[[Manuals/calci/COS| COS]] | |
− | + | *[[Manuals/calci/COSH| COSH]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | *[[Manuals/calci/DSEC | DSEC]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ==References== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | *[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions] | |
− | + | *[http://en.wikipedia.org/wiki/Hyperbolic_function Hyperbolic Function] |
Revision as of 05:35, 5 November 2013
SECH(z)
- where z is any real number
Description
This function gives the hyperbolic secant of 'z',also it is called as circular function.SECH is the reciprocal of COSH function.SECH z=(cosh z)^-1.i.e. 2/e^z+e^-z or SEC iz.where 'I' is the imginary unit and i=sqrt(-1).Also relation between hyperbolic &trignometric function is sec(iz)=sechz&sec(iz)=sec z
Examples
SECH(z)
- z is any real number.
SECH(z) | Value(Radian) |
SECH(0) | 1 |
SECH(10) | 0.00009079985933781728 |
SECH(7) | SECH(7)=0.001823762414 |