Difference between revisions of "Manuals/calci/BIN2DEC"

From ZCubes Wiki
Jump to navigation Jump to search
Line 7: Line 7:
  
 
BIN2DEC(number)
 
BIN2DEC(number)
 +
  
 
For example, BIN2DEC(101) ''returns 5'' as a result.
 
For example, BIN2DEC(101) ''returns 5'' as a result.
Line 18: Line 19:
 
*The conversion can be obtained for a binary number upto 10 bits. The most significant bit represents the 'sign' of the number (0=positive, 1=negative). Negative numbers are represented using 2's complement notation.
 
*The conversion can be obtained for a binary number upto 10 bits. The most significant bit represents the 'sign' of the number (0=positive, 1=negative). Negative numbers are represented using 2's complement notation.
  
*Positive numbers can be from 0 (000000000) to 511 (111111111) or negative numbers -1 (1000000001) to -512 (1111111111).
+
*Positive numbers can be from 0 (000000000) to 511 (0111111111) or negative numbers -1 (1111111111) to -512 (1000000000).
  
 
*A number preceding with '0' (e.g 01111111111) should be written in text format ("01111111111") to avoid confusion with octal numbers.   
 
*A number preceding with '0' (e.g 01111111111) should be written in text format ("01111111111") to avoid confusion with octal numbers.   
Line 49: Line 50:
  
 
|- class="even"
 
|- class="even"
| class="ssh1_f" |  
+
| class="ssh1_f" | 1111000000
| class="sshl_f" |
+
| class="sshl_f" | -64
  
  
 
|}
 
|}

Revision as of 06:29, 13 November 2013

BIN2DEC(number)

  • Where 'number' is the binary number to be converted to decimal number.


Description

BIN2DEC(number)


For example, BIN2DEC(101) returns 5 as a result.

            BIN2DEC(11110) returns 30 as a result. 
  • BIN2DEC() converts a binary number to decimal number.
  • Binaray number is represented using digits 1 or 0 only. The number can also be entered in text format (e.g "101").
  • The conversion can be obtained for a binary number upto 10 bits. The most significant bit represents the 'sign' of the number (0=positive, 1=negative). Negative numbers are represented using 2's complement notation.
  • Positive numbers can be from 0 (000000000) to 511 (0111111111) or negative numbers -1 (1111111111) to -512 (1000000000).
  • A number preceding with '0' (e.g 01111111111) should be written in text format ("01111111111") to avoid confusion with octal numbers.
  • A binary number (e.g '101') can be converted to decimal number (base 2) as -
(1*2^2)+(0*2^1)+(1*2^0)=4+0+1= 5
  • If the number is not a valid number, 'Calci' returns an #ERROR message.

Examples

Binary Input Decimal Output
100 4
11110 30
1111111111 -1
1111000000 -64