Difference between revisions of "Manuals/calci/IMABS"

From ZCubes Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<div style="font-size:30px">'''IMABS(in)'''</div><br/>
 
<div style="font-size:30px">'''IMABS(in)'''</div><br/>
  
*IMABS(iN),where iN is the complex number of the form x+iy
+
*where <math>iN</math> is the complex number of the form <math>x+iy</math>
  
 
==Description==
 
==Description==
*This function gives the absolute value of a complex number of the form x+iy.  
+
*This function gives the absolute value of a complex number of the form <math>x+iy</math>.  
*Complex number z=x+iy, where x&y are real numbers and i is the imaginary unit i=sqrt(-1).
+
*Complex number <math>z=x+iy</math>, where <math>x</math> & <math>y</math> are real numbers and <math>i</math> is the imaginary unit <math>i=\sqrt{-1}</math>.
 
*A complex number's absolute value is measured from zero on the complex number plane.   
 
*A complex number's absolute value is measured from zero on the complex number plane.   
*We can use COMPLEX function to convert   real and imaginary number in to a complex number.  
+
*We can use COMPLEX function to convert real and imaginary number into a complex number.  
*The absolute value of a complex number is IMABS(z)=|z|=sqrt(x^2+y^2)
+
*The absolute value of a complex number is <math>IMABS(z)=|z|=\sqrt{x^2+y^2}<math>
  
 
==Examples==
 
==Examples==

Revision as of 22:45, 19 November 2013

IMABS(in)


  • where is the complex number of the form

Description

  • This function gives the absolute value of a complex number of the form .
  • Complex number , where & are real numbers and is the imaginary unit .
  • A complex number's absolute value is measured from zero on the complex number plane.
  • We can use COMPLEX function to convert real and imaginary number into a complex number.
  • The absolute value of a complex number is <math>IMABS(z)=|z|=\sqrt{x^2+y^2}<math>

Examples

  • IMABS("6+8i")=10
  • IMABS("5-7i")=SQRT(74)=8.60232
  • IMABS("-3-5i")=SQRT(34)=5.83095

See Also


References

Complex Numbers