Difference between revisions of "Manuals/calci/IMDIV"
Jump to navigation
Jump to search
(Created page with "<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify"> Syntax </div></div> ---- <div id="4SpaceContent" align="left"><div class="ZEditBox" align=...") |
|||
Line 1: | Line 1: | ||
− | <div | + | <div style="font-size:30px">'''IMDIV(z1,z2)'''</div><br/> |
+ | *where 'z1' and 'z2' are complex numbers. | ||
+ | ==Description== | ||
+ | *This function gives the division of two complex numbers. | ||
+ | *This function used to remove the I (imaginary unit) from the denominator. | ||
+ | *In IMDIV(z1,z2), where z1,z2 are the two complex numbers is in the form of z1=a+ib andz2=c+id, where a,b,c &d are real numbers i is the imaginary unit, i=sqrt(-1). | ||
+ | *To do the division of complex number we have follow the steps:step1: we have to write the complex number is in the fraction form. | ||
+ | *step 2: To find the conjugate of the denominator. | ||
+ | *step 3:To mutiply the numerator and denominator with conjugate. | ||
+ | i.e. IMDIV(z1,z2)=(a+ib)/(c+id)=((a+ib)/(c+id))*((c-id)/(c-id)) | ||
+ | =[(ac+bd)/(c^2+d^2)]+[(bc-ad)i/[(c^2+d^2)] | ||
− | + | ==Examples== | |
+ | #IMEXP("2+3i")=-7.315110094901102+1.0427436562359i | ||
+ | #IMEXP("4-5i")=15.4874305606508+52.355491418482i | ||
+ | #IMEXP("6")=403.428793492735 | ||
+ | #IMEXP("2i")=-0.416146836547142+0.909297426825682i | ||
+ | #IMEXP("0")=1 andIMEXP("0i")=1 | ||
− | + | ==See Also== | |
− | + | *[[Manuals/calci/COMPLEX | COMPLEX ]] | |
− | + | *[[Manuals/calci/IMAGINARY | IMAGINARY ]] | |
+ | *[[Manuals/calci/IMREAL | IMREAL ]] | ||
+ | *[[Manuals/calci/EXP | EXP ]] | ||
− | + | ==References== | |
− | + | [http://en.wikipedia.org/wiki/Exponential_function| Exponential function] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Revision as of 03:44, 25 November 2013
IMDIV(z1,z2)
- where 'z1' and 'z2' are complex numbers.
Description
- This function gives the division of two complex numbers.
- This function used to remove the I (imaginary unit) from the denominator.
- In IMDIV(z1,z2), where z1,z2 are the two complex numbers is in the form of z1=a+ib andz2=c+id, where a,b,c &d are real numbers i is the imaginary unit, i=sqrt(-1).
- To do the division of complex number we have follow the steps:step1: we have to write the complex number is in the fraction form.
- step 2: To find the conjugate of the denominator.
- step 3:To mutiply the numerator and denominator with conjugate.
i.e. IMDIV(z1,z2)=(a+ib)/(c+id)=((a+ib)/(c+id))*((c-id)/(c-id))
=[(ac+bd)/(c^2+d^2)]+[(bc-ad)i/[(c^2+d^2)]
Examples
- IMEXP("2+3i")=-7.315110094901102+1.0427436562359i
- IMEXP("4-5i")=15.4874305606508+52.355491418482i
- IMEXP("6")=403.428793492735
- IMEXP("2i")=-0.416146836547142+0.909297426825682i
- IMEXP("0")=1 andIMEXP("0i")=1