Difference between revisions of "Manuals/calci/IMDIV"

From ZCubes Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<div style="font-size:30px">'''IMDIV(z1,z2)'''</div><br/>
 
<div style="font-size:30px">'''IMDIV(z1,z2)'''</div><br/>
*where 'z1' and 'z2' are complex numbers.
+
*<math>z1<math> and <math>z2<math> are complex numbers.
 
==Description==
 
==Description==
 
*This function gives the division of two complex numbers.  
 
*This function gives the division of two complex numbers.  
*This function used to remove the I (imaginary unit) from the denominator.
+
*This function used to remove the <math>i<math> (imaginary unit) from the denominator.
*In IMDIV(z1,z2), where z1,z2 are the two complex numbers is in the form of z1=a+ib andz2=c+id, where a,b,c &d are real numbers i is the imaginary unit, i=sqrt(-1).
+
*<math>z1,z2</math> are the two complex numbers in the form of <math>z1=a+ib</math> and <math>z2=c+id</math>, where <math>a,b,c<math> & <math>d<math> are real numbers <math>i</math> is the imaginary unit, <math>i=\sqrt{-1}<math>.
*To do the division of complex number we have follow the steps:step1: we have to write the complex number is in the fraction form.
+
*To do the division of complex number we have follow the steps:
*step 2: To find the conjugate of the denominator.
+
step 1: We have to write the complex number is in the fraction form.
*step 3:To mutiply the numerator and denominator with conjugate.
+
step 2: To find the conjugate of the denominator.
i.e. IMDIV(z1,z2)=(a+ib)/(c+id)=((a+ib)/(c+id))*((c-id)/(c-id))=[(ac+bd)/(c^2+d^2)]+[(bc-ad)i/[(c^2+d^2)]
+
step 3: To mutiply the numerator and denominator with conjugate.
 +
i.e. <math>IMDIV(z1,z2) = \frac{a+ib}{c+id} = \frac{a+ib}{c+id}*\frac{c-id}{c-id} =\frac{ac+bd}{c^2+d^2}+\frac{(bc-ad)i}{(c^2+d^2)}
  
 
==Examples==
 
==Examples==

Revision as of 05:28, 25 November 2013

IMDIV(z1,z2)


  • are the two complex numbers in the form of and , where Failed to parse (syntax error): {\displaystyle a,b,c<math> & <math>d<math> are real numbers <math>i} is the imaginary unit, <math>i=\sqrt{-1}<math>.
  • To do the division of complex number we have follow the steps:
step 1: We have to write the complex number is in the fraction form.
step 2: To find the conjugate of the denominator.
step 3: To mutiply the numerator and denominator with conjugate.

i.e. <math>IMDIV(z1,z2) = \frac{a+ib}{c+id} = \frac{a+ib}{c+id}*\frac{c-id}{c-id} =\frac{ac+bd}{c^2+d^2}+\frac{(bc-ad)i}{(c^2+d^2)}

Examples

  1. IMDIV("4+2i","3-i")=(4+2i/3-i)*(3+i/3+i)=(12+10i+2i^2)/(3^2-i^2)=10+10i/10 (because i^2=-1)= 1+i/1=1+i
  2. IMDIV("3-5i,2-6i")=0.9+0.2i
  3. IMDIV("5","2+3i")=0.769-1.153i
  4. IMDIV("1+i","2")=0.5+0.5i

See Also


References

Exponential function