Difference between revisions of "Manuals/calci/EXPONDIST"

From ZCubes Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<div style="font-size:30px">'''EXPONDIST(x,Lambda,cum)'''</div><br/>
+
<div style="font-size:30px">'''EXPONDIST(x,lambda,cum)'''</div><br/>
 
*<math>x</math> is the value of the function
 
*<math>x</math> is the value of the function
*<math>lambda</math> is the value of the rate parameter
+
*<math>lambda(\lambda)</math> is the value of the rate parameter
 
*<math>cu</math> is the logical value like TRUE or FALSE
 
*<math>cu</math> is the logical value like TRUE or FALSE
  

Revision as of 01:05, 29 November 2013

EXPONDIST(x,lambda,cum)


  • is the value of the function
  • is the value of the rate parameter
  • is the logical value like TRUE or FALSE

Description

  • This function gives the Exponential Distribution. This distribution used to model the time until something happens in the process.
  • This describes the time between events in a Poisson process i.e, a process in which events occur continuously and independently at a constant average rate.
  • For e.g Time between successive vehicles arrivals at a workshop.
  • In EXPONDIST(x, lambda,cu), xis the value of the function, lambda is called rate parameter and cu(cumulative) is the TRUE or FALSE. *This function will give the cumulative distribution function , when cu is TRUE,otherwise it will give the probability density function , when cu is FALSE.
  • Suppose we are not giving the cu value, by default it will consider the cu value is FALSE.
  • This function will give the error result when
1.  or  is non-numeric.
2.  or 

The Probability Density Function of an Exponential Distribution is

or

Failed to parse (syntax error): {\displaystyle f(x;\lambda)= λe^{-\lambda x} .H(x)}
  • where is the rate parameter and H(x) is the Heaviside step function
  • This function is valid only on the interval [0,infinity].

The Cumulative Distribution Function is :

or

  • The mean or expected value of the Exponential Distribution is: Failed to parse (syntax error): {\displaystyle E[x]=\frac{1}{ λ}}
  • The variance of the Exponential Distribution is: .

Examples

Question : If jobs arrive at an average of 15 seconds, λ = 5 per minute, what is the probability of waiting 30 seconds, i.e 0.5 min? Here λ=5 and x=0.5

  • =EXPONDIST(0.5,5,TRUE) = 0.917915001
  • =EXPONDIST(5,3,TRUE) = 0.999999694
  • =EXPONDIST(0.4,2,FALSE) = 0.898657928"

See Also

References