Difference between revisions of "Manuals/calci/BETAINV"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left">'''BETAINV'''('''prob''','''alpha''','''beta''',X,Y) '''Where Prob is a probability associated with the beta distribut...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">'''BETAINV'''('''prob''','''alpha''','''beta''',X,Y)
+
<div style="font-size:30px">'''BETAINV(prob,alpha,beta,a,b)'''</div><br/>
 +
*Where prob is the probability value associated with the beta distribution.
 +
*Alpha& beta are the values of  the shape parameter.
 +
*a&b the lower and upper limit to the interval of x.
  
'''Where Prob is a probability associated with the beta distribution.'''
+
==Description==
 +
*This function gives the inverse value of cumulative beta probability distribution.
 +
*It is called inverted beta function or beta prime.
 +
*In BETAINV(prob,alpha,beta,a,b), prob is the probability value of the associated with beta distribution, alpha and beta are the values of the  two positive shape parameters and a and b are the lower and upper limit. *Normally the limit values are optional, i.e., when we are giving the values of a&b then the result value is from a and b, otherwise when we are omitting the values a and b by default it will consider a=0 and b=1, so the result value is from 0 and1.
 +
*If BETADIST(x,alpha,beta,a,b)=prob, then BETAINV(prob,alpha,beta,a,b)=x.
 +
*BETAINV using the iterating method to find the value of x.suppose the iteration has not converged after 100 searches, then the function gives the error result.
 +
*This function will give the error result when 
 +
#Any one of the arguments are nonnumeric
 +
#alpha or beta<=0
 +
#x<a ,x>b, or a=b
 +
#we are not mentioning the limit values a and b, by default it will consider the standard cumulative beta distribution, a= 0 and b= 1.
 +
==Examples==
 +
#BETAINV(0.2060381025,5,9,2,6)=3
 +
#BETAINV(0.359492343,8,10)=0.399999976(EXCEL) is approximate to 0.4=1.75(calci)
 +
                                             
 +
#BETAINV(0.685470581,5,8,2,6)= 3.78378773(excel)=3.75(calci)
 +
                                                 
 +
#BETAINV(0.75267,1,7,7,9)=7.361844063(Excel)=7.25(calci)
 +
                                             
 +
#BETAINV(0.5689,-2,4,3,5)=NAN, because alpha<0.
  
'''Alpha and Beta are the parameter of the distribution.'''
+
==See Also==
 +
*[[Manuals/calci/BETADIST | BETADIST]]
 +
*[[Manuals/calci/ALL | All Functions]]
  
'''X is an optional lower bound and Y is an optional upper bound to the interval of x.'''
+
==References==
 
+
[http://en.wikipedia.org/wiki/Beta_distribution Beta Distribution]
</div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left"> It calculates the inverse of the cumulative distribution function for a specified beta distribution.
 
 
 
</div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left"> ·          <font face="Arial">Arguments sgould be numeric.</font>
 
 
 
·       BETAINV shows the error value, when alpha is less than or equal to 0 or beta is less than or equal to 0 and prob is less than or equal to 0 or prob is grater than 1
 
 
 
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
 
 
BETAINV
 
 
 
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left">
 
 
 
Lets see an example,
 
 
 
BETAINV(prob,alpha,beta,X,Y)
 
 
 
B
 
 
 
0.28669548
 
 
 
6
 
 
 
13
 
 
 
6
 
 
 
8
 
 
 
<nowiki>=BETAINV(B2,B3,B4,B5,B6)</nowiki>
 
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left"><div>
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| class="        " | Column2
 
| class="    " | Column3
 
| class="  " |
 
| class="  " | Column4
 
|
 
|- class="odd"
 
| class=" " | Row1
 
| class=" " | 0.28669548
 
| class="  sshl_f    SelectTD" |
 
<div id="2EditDiv" class="tab active">=BETAINV(B2,B3,B4,B5,B6)</div><div id="2Space_Handle" class="zhandles"></div><div id="2Space_Copy" class="zhandles"></div>
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
|- class="even"
 
| class="  " | Row2
 
| class=" " | 6
 
|
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
|- class="odd"
 
| Row3
 
| class=" " | 13
 
| class="sshl_f  " |
 
| class="sshl_f" |
 
| class="  " |
 
| class="sshl_f" |
 
|
 
|- class="even"
 
| Row4
 
| class=" " | 6
 
| class="sshl_f" |
 
|
 
| class=" " |
 
| class="sshl_f" |
 
|
 
|- class="odd"
 
| class="sshl_f" | Row5
 
| class="sshl_f " | 8
 
| class="  " |
 
|
 
|
 
| class="  " |
 
|
 
|- class="even"
 
| class=" " | Row6
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
| class="sshl_f" |
 
|
 
|
 
|}
 
 
 
<div align="left"></div>''''''</div></div>
 
----
 

Revision as of 00:34, 4 December 2013

BETAINV(prob,alpha,beta,a,b)


  • Where prob is the probability value associated with the beta distribution.
  • Alpha& beta are the values of the shape parameter.
  • a&b the lower and upper limit to the interval of x.

Description

  • This function gives the inverse value of cumulative beta probability distribution.
  • It is called inverted beta function or beta prime.
  • In BETAINV(prob,alpha,beta,a,b), prob is the probability value of the associated with beta distribution, alpha and beta are the values of the two positive shape parameters and a and b are the lower and upper limit. *Normally the limit values are optional, i.e., when we are giving the values of a&b then the result value is from a and b, otherwise when we are omitting the values a and b by default it will consider a=0 and b=1, so the result value is from 0 and1.
  • If BETADIST(x,alpha,beta,a,b)=prob, then BETAINV(prob,alpha,beta,a,b)=x.
  • BETAINV using the iterating method to find the value of x.suppose the iteration has not converged after 100 searches, then the function gives the error result.
  • This function will give the error result when
  1. Any one of the arguments are nonnumeric
  2. alpha or beta<=0
  3. x<a ,x>b, or a=b
  4. we are not mentioning the limit values a and b, by default it will consider the standard cumulative beta distribution, a= 0 and b= 1.

Examples

  1. BETAINV(0.2060381025,5,9,2,6)=3
  2. BETAINV(0.359492343,8,10)=0.399999976(EXCEL) is approximate to 0.4=1.75(calci)
  1. BETAINV(0.685470581,5,8,2,6)= 3.78378773(excel)=3.75(calci)
  1. BETAINV(0.75267,1,7,7,9)=7.361844063(Excel)=7.25(calci)
  1. BETAINV(0.5689,-2,4,3,5)=NAN, because alpha<0.

See Also

References

Beta Distribution