Difference between revisions of "Manuals/calci/BETAINV"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
<div style="font-size:30px">'''BETAINV(prob,alpha,beta,a,b)'''</div><br/> | <div style="font-size:30px">'''BETAINV(prob,alpha,beta,a,b)'''</div><br/> | ||
− | * | + | *<math>prob</math> is the probability value associated with the beta distribution. |
− | * | + | *<math>\alpha</math> & <math>beta</math> are the values of the shape parameter. |
− | *a&b the lower and upper limit to the interval of x. | + | *<math>a</math> & <math>b</math> the lower and upper limit to the interval of <math>x</math>. |
==Description== | ==Description== | ||
− | *This function gives the inverse value of | + | *This function gives the inverse value of Cumulative Beta Probability Distribution. |
− | *It is called | + | *It is called Inverted Beta Function or Beta Prime. |
− | *In <math>BETAINV(prob,alpha,beta,a,b)</math>, prob is the probability value | + | *In <math>BETAINV(prob,\alpha,\beta,a,b)</math>, <math>prob</math> is the probability value associated with Beta Distribution, <math>alpha</math> and <math>beta</math> are the values of two positive shape parameters and <math>a</math> and <math>b</math> are the lower and upper limit. |
− | *If <math>BETADIST(x,alpha,beta,a,b)=prob</math>, then <math>BETAINV(prob,alpha,beta,a,b)=x</math>. | + | *Normally the limit values are optional, i.e. when we are giving the values of <math>a</math>&<math>b</math> then the result value is from <math>a</math> and <math>b</math>. |
− | *<math>BETAINV</math> | + | *When we are omitting the values <math>a</math> and <math>b</math>, by default it will consider <math>a=0</math> and <math>b=1</math>, so the result value is from <math>0</math> and <math>1</math>. |
+ | *If <math>BETADIST(x,\alpha,\beta,a,b)=prob</math>, then <math>BETAINV(prob,\alpha,\beta,a,b)=x</math>. | ||
+ | *<math>BETAINV</math> use the iterating method to find the value of <math>x</math>.suppose the iteration has not converged after 100 searches, then the function gives the error result. | ||
*This function will give the error result when | *This function will give the error result when | ||
− | + | 1.Any one of the arguments are non-numeric | |
− | + | 2.<math>\alpha</math> or <math>\beta \le 0 </math> | |
− | + | 3.<math>x<a ,x>b</math> or <math>a=b</math> | |
− | + | 4.we are not mentioning the limit values for <math>a</math>&<math>b</math>, by default it will consider the Standard Cumulative Beta Distribution, <math>a = 0</math> and <math>b = 1</math>. | |
==Examples== | ==Examples== | ||
− | #BETAINV(0.2060381025,5,9,2,6)=3 | + | #BETAINV(0.2060381025,5,9,2,6) = 3 |
− | #BETAINV(0.359492343,8,10) | + | #BETAINV(0.359492343,8,10) = 1.75 |
− | #BETAINV(0.685470581,5,8,2,6 | + | #BETAINV(0.685470581,5,8,2,6) = 3.75 |
− | #BETAINV(0.75267,1,7,7,9 | + | #BETAINV(0.75267,1,7,7,9) = 7.25 |
− | #BETAINV(0.5689,-2,4,3,5)=NAN, because alpha<0. | + | #BETAINV(0.5689,-2,4,3,5) = NAN, because <math>\alpha < 0</math>. |
==See Also== | ==See Also== |
Revision as of 02:59, 4 December 2013
BETAINV(prob,alpha,beta,a,b)
- is the probability value associated with the beta distribution.
- & are the values of the shape parameter.
- & the lower and upper limit to the interval of .
Description
- This function gives the inverse value of Cumulative Beta Probability Distribution.
- It is called Inverted Beta Function or Beta Prime.
- In , is the probability value associated with Beta Distribution, and are the values of two positive shape parameters and and are the lower and upper limit.
- Normally the limit values are optional, i.e. when we are giving the values of & then the result value is from and .
- When we are omitting the values and , by default it will consider and , so the result value is from and .
- If , then .
- use the iterating method to find the value of .suppose the iteration has not converged after 100 searches, then the function gives the error result.
- This function will give the error result when
1.Any one of the arguments are non-numeric 2. or 3. or 4.we are not mentioning the limit values for &, by default it will consider the Standard Cumulative Beta Distribution, and .
Examples
- BETAINV(0.2060381025,5,9,2,6) = 3
- BETAINV(0.359492343,8,10) = 1.75
- BETAINV(0.685470581,5,8,2,6) = 3.75
- BETAINV(0.75267,1,7,7,9) = 7.25
- BETAINV(0.5689,-2,4,3,5) = NAN, because .