Difference between revisions of "Manuals/calci/FISHER"
Jump to navigation
Jump to search
Line 22: | Line 22: | ||
*[[Manuals/calci/CORREL | CORREL ]] | *[[Manuals/calci/CORREL | CORREL ]] | ||
*[[Manuals/calci/FISHERINV | FISHERINV ]] | *[[Manuals/calci/FISHERINV | FISHERINV ]] | ||
− | |||
==References== | ==References== | ||
[http://en.wikipedia.org/wiki/Bessel_function| Bessel Function] | [http://en.wikipedia.org/wiki/Bessel_function| Bessel Function] |
Revision as of 00:09, 10 December 2013
FISHER(x)
- is the number.
Description
- This function gives the value of Fisher Transformation at .
- Fisher Transformation is used to test the hypothesis of two correlations.
- It is mainly associated with the Pearson Product-Moment Correlation coefficient for bi-variate normal observations.
- In , is the number which ranges between -1 to +1.
- The transformation is defined by : , where is the natural logarithm function and is the Inverse Hyperbolic function.
- This function will give the result as error when:
1. is non-numeric 2. or .
Examples
- FISHER(0.5642) = 0.6389731838284958
- FISHER(0)= 0
- FISHER(-0.3278) = -0.3403614004970268
- FISHER(1) = Infinity
- FISHER(-1) = Infinity