Difference between revisions of "Manuals/calci/IMARGUMENT"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font color="#000000"><font face="Arial, sans-serif"><font size="2">'''IMARGUMENT'''</font></font><font face="Arial, sa...")
 
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left"> <font color="#000000"><font face="Arial, sans-serif"><font size="2">'''IMARGUMENT'''</font></font><font face="Arial, sans-serif"><font size="2">(</font></font><font face="Arial, sans-serif"><font size="2">'''iN'''</font></font><font face="Arial, sans-serif"><font size="2">)</font></font></font>
+
<div style="font-size:30px">'''IMARGUMENT(z)'''</div><br/>
 +
*<math>z</math> is the complex number is of the form <math>x+iy</math>  
 +
*<math>n</math> is the order of the Bessel function and is an integer
 +
==Description==
 +
*This function gives  the principal value of the argument of the complex-valued expression z. i.e ., 
 +
*The angle from the positive axis to the line segment is called the argument of a complex number.
 +
*In this function angle value is in radians.
 +
*Here IMARGUMENT(z), Where z is the complex number in the form of "x+iy".i.e. x&y are the real numbers.
 +
*'I' imaginary unit .i=sqrt(-1).
 +
*An argument of the complex number z = x + iy is any real quantity φ such that z = x + i y = r cosφ + i r sinφ for some positive real number r.
 +
*Where r=|z|=sqrt(x^2+y^2) and φ∈(is belongs to) (-Pi(),Pi()].
 +
*The argument of a complex number is calculated by arg(z)= tan^-1(y/x) =theta in radians.
 +
*To change the radian value in to degree we can use DEGREES function or we can multiply the answer with 180/pi().
 +
*We can use COMPLEX function to convert  real and imaginary number in to a complex number.
  
<font color="#000000"><font face="Arial, sans-serif"><font size="2">Where 'iN' is a complex number.</font></font></font>
+
==Examples==
  
</div>
+
#IMARGUMENT("3-2i")=-0.588002604
----
+
#IMARGUMENT("5+6i")=0.876058051
<div id="7SpaceContent" class="zcontent" align="left"
+
#IMARGUMENT("2")=0
 +
#IMARGUMENT("4i")=1.570796327
 +
#DEGREES(IMARGUMENT("2+2i"))=45
  
* <font color="#000000"><font face="Arial, sans-serif"><font size="2">The equation to find out IMARGUMENT is : </font></font></font>
 
  
<font color="#000000"></font>
 
  
<font color="#000000"><font face="Arial, sans-serif"><font size="2">where:</font></font></font>
+
==References==
 
+
[http://en.wikipedia.org/wiki/Bessel_function Bessel Function]
<font color="#000000"> <font face="Arial, sans-serif"><font size="2">and z = x + yi</font></font></font>
 
 
 
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
 
 
IMARGUMENT
 
 
 
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left">
 
 
 
<font color="#000000"><font face="Arial, sans-serif"><font size="2">Lets see an example,</font></font></font>
 
 
 
<font color="#000000"><font face="Arial, sans-serif"><font size="2">IMARGUMENT(iN)</font></font></font>
 
 
 
<font color="#000000"><font face="Arial, sans-serif"><font size="2"><nowiki>=IMARGUMENT("5+8i") is 1.012</nowiki></font></font></font>
 
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left"> 
 
 
 
<font color="#000000"><font face="Arial, sans-serif"><font size="2">This function returns the argument (theta), that is an angle which expressed in radians</font></font></font>
 
 
 
</div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE1" class="SpreadSheet blue"
 
|- class="even"
 
| class="  " |
 
<div id="1Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| Column1
 
| class="  " | Column2
 
| class=" " | Column3
 
| class="  " | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 1.0122
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f SelectTD SelectTD" |
 
<div id="1Space_Handle" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="1Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row6
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 

Revision as of 22:56, 15 December 2013

IMARGUMENT(z)


  • is the complex number is of the form
  • is the order of the Bessel function and is an integer

Description

  • This function gives the principal value of the argument of the complex-valued expression z. i.e .,
  • The angle from the positive axis to the line segment is called the argument of a complex number.
  • In this function angle value is in radians.
  • Here IMARGUMENT(z), Where z is the complex number in the form of "x+iy".i.e. x&y are the real numbers.
  • 'I' imaginary unit .i=sqrt(-1).
  • An argument of the complex number z = x + iy is any real quantity φ such that z = x + i y = r cosφ + i r sinφ for some positive real number r.
  • Where r=|z|=sqrt(x^2+y^2) and φ∈(is belongs to) (-Pi(),Pi()].
  • The argument of a complex number is calculated by arg(z)= tan^-1(y/x) =theta in radians.
  • To change the radian value in to degree we can use DEGREES function or we can multiply the answer with 180/pi().
  • We can use COMPLEX function to convert real and imaginary number in to a complex number.

Examples

  1. IMARGUMENT("3-2i")=-0.588002604
  2. IMARGUMENT("5+6i")=0.876058051
  3. IMARGUMENT("2")=0
  4. IMARGUMENT("4i")=1.570796327
  5. DEGREES(IMARGUMENT("2+2i"))=45


References

Bessel Function