Difference between revisions of "Manuals/calci/MDETERM"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
<div style="font-size:30px">'''MDETERM(arr)'''</div><br/> | <div style="font-size:30px">'''MDETERM(arr)'''</div><br/> | ||
− | * | + | *<math>arr</math> is the array of numeric elements |
− | |||
− | |||
==Description== | ==Description== | ||
*This function gives the determinant value of a matrix. | *This function gives the determinant value of a matrix. | ||
− | *To calculate the determinant of | + | *To calculate the determinant of a matrix, we can choose only square matrix.i.e. Number of rows and number of columns should be equal. |
− | |||
*Determinant of the identity matrix is always 1. | *Determinant of the identity matrix is always 1. | ||
− | *Determinant of the matrix A is denoted by det(A) or |A|. | + | *Determinant of the matrix <math>A</math> is denoted by <math>det(A)</math> or <math>|A|</math>. |
− | *Let A be 2x2 matrix with the elements | + | *Let <math>A</math> be 2x2 matrix with the elements |
<math>A = \begin{bmatrix} | <math>A = \begin{bmatrix} | ||
a & b \\ | a & b \\ | ||
Line 15: | Line 12: | ||
\end{bmatrix} | \end{bmatrix} | ||
</math> | </math> | ||
− | *Then det(A)=ad-bc, where a,b,c,d all are real numbers. | + | *Then <math>det(A)=ad-bc</math>, where <math>a,b,c,d</math> all are real numbers. |
− | *Let A be the 3x3 matrix with the elements | + | *Let <math>A</math> be the 3x3 matrix with the elements |
<math>A = \begin{bmatrix} | <math>A = \begin{bmatrix} | ||
a & b & c \\ | a & b & c \\ | ||
Line 33: | Line 30: | ||
g & h | g & h | ||
\end{vmatrix}</math>: | \end{vmatrix}</math>: | ||
− | <math>|A| =a(ei-fh) -b(di-fg)+c(dh-eg)</math> | + | <math>|A| =a(ei-fh)-b(di-fg)+c(dh-eg)</math> |
*Let <math>A</math> be a square matrix of order <math>n</math>. Write <math>A = (a_{ij})</math>, | *Let <math>A</math> be a square matrix of order <math>n</math>. Write <math>A = (a_{ij})</math>, | ||
− | *Where <math>a_{ij}</math> is the entry on the <math>i</math> | + | *Where <math>a_{ij}</math> is the entry on the <math>i^{th}</math> row and <math>j^{th}</math> column and <math>i=1</math> to <math>n</math> & <math>j=1</math> to <math>n</math>. |
− | *For any <math>i</math> and <math>j</math>, set <math>A_{ij}</math> (called the co-factors), then the general formula for determinant of the matrix A , | + | *For any <math>i</math> and <math>j</math>, set <math>A_{ij}</math> (called the co-factors), then the general formula for determinant of the matrix <math>A</math> is, |
<math>|A|=\sum_{j=1}^n a_{ij} A_{ij}</math>, for any fixed <math>i</math>. | <math>|A|=\sum_{j=1}^n a_{ij} A_{ij}</math>, for any fixed <math>i</math>. | ||
Also<math>|A|=\sum_{i=1}^n a_{ij} A_{ij}</math>, for any fixed <math>j</math>. | Also<math>|A|=\sum_{i=1}^n a_{ij} A_{ij}</math>, for any fixed <math>j</math>. |
Revision as of 04:56, 31 December 2013
MDETERM(arr)
- is the array of numeric elements
Description
- This function gives the determinant value of a matrix.
- To calculate the determinant of a matrix, we can choose only square matrix.i.e. Number of rows and number of columns should be equal.
- Determinant of the identity matrix is always 1.
- Determinant of the matrix is denoted by or .
- Let be 2x2 matrix with the elements
- Then , where all are real numbers.
- Let be the 3x3 matrix with the elements
Then :
- Let be a square matrix of order . Write ,
- Where is the entry on the row and column and to & to .
- For any and , set (called the co-factors), then the general formula for determinant of the matrix is,
, for any fixed . Also, for any fixed .
- This function will give the result as error when
1. Any one of the element in array is empty or contain non-numeric 2. Number of rows is not equal to number of columns
Examples
- =MDETERM({6,4,8;3,6,1;2,4,5}) = 104
- =DETERM({-5,10;6,-8}) = -20
- =MDETERM({1,0,2,1;4,0,2,-1;1,4,5,2;3,1,2,0}) = 17
- =MDETERM({1,2,3;5,2,8}) = NAN