Difference between revisions of "Manuals/calci/SQRT"

From ZCubes Wiki
Jump to navigation Jump to search
Line 22: Line 22:
 
|+Spreadsheet
 
|+Spreadsheet
 
|-
 
|-
! !! Number !! Square Root   
+
!! Number !! Square Root   
 
|-
 
|-
 
| 1 || 1  
 
| 1 || 1  
 
|-
 
|-
| 2 || 1.414214
+
| 2 || 1.4142135623730951
 
|-
 
|-
|3 || 1.732051
+
|3 || 1.7320508075688772
 
|-
 
|-
|4 ||2
+
|4 || 2
|}
 
 
 
 
 
1 1
 
2 1.4142135623730951
 
3 1.7320508075688772
 
4 2
 
5 2.23606797749979
 
6 2.449489742783178
 
7 2.6457513110645907
 
8 2.8284271247461903
 
9 3
 
10 3.1622776601683795
 
 
 
 
 
<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify">
 
 
 
Syntax
 
 
 
It is the number for which you want the square root.
 
 
 
SQRT gives a positive square root.
 
 
 
If number is negative, SQRT gives ‘NaN‘ an error
 
 
 
''' '''Consider n = 625 then
 
 
 
=SQRT(625) gives 25
 
 
 
''' '''
 
 
 
</div></div>
 
 
 
<div id="6SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
|
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 625
 
|
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 25
 
|
 
|}
 
 
 
===ZOS===
 
1..10@SQRT
 
 
 
{| class="wikitable"
 
|-
 
! Number !! SQRT
 
|-
 
| 1 || 1
 
|-
 
| 2 || 1.4142135623730951
 
|-
 
| 3 || 1.7320508075688772
 
|-
 
| 4 || 2  
 
 
|-
 
|-
 
| 5 || 2.23606797749979  
 
| 5 || 2.23606797749979  
Line 108: Line 44:
 
| 10 || 3.1622776601683795  
 
| 10 || 3.1622776601683795  
 
|}
 
|}
 +
 +
 +
==See Also==
 +
*[[Manuals/calci/SQRTPI | SQRTPI ]]
 +
 +
 +
==References==
  
 
=See Also=
 
=See Also=

Revision as of 00:33, 24 March 2014

SQRT(n)


  • is any positive number.


Description

  • This function gives the square root of a positive real number.
  • Squaring is the value that can be multiplied by itself to give the original number.
  • The square root of a number is the inverse operation of squaring that number.
  • The root of a number is an equal factor of the number.
  • Every non-negative real number a has only one non-negative square root, called the principal square root, which is denoted by , where Failed to parse (syntax error): {\displaystyle \sqrt} is called the radical sign or radix.
  • Square roots of positive whole numbers that are not perfect squares are always irrational numbers.
  • Numbers not expressible as a ratio of two integers .
    This function will give the result as NaN when n is a negative number.

Examples

  1. =SQRT(0)=0
  2. =SQRT(1)=1
  3. =SQRT(136)= 11.661903789690601
  4. =SQRT(ABS(-625))= 25
  5. =1..10@SQRT
Spreadsheet
! Number Square Root
1 1
2 1.4142135623730951
3 1.7320508075688772
4 2
5 2.23606797749979
6 2.449489742783178
7 2.6457513110645907
8 2.8284271247461903
9 3
10 3.1622776601683795


See Also


References

See Also

References