Difference between revisions of "Manuals/calci/GAMMADIST"

From ZCubes Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<div style="font-size:30px">'''GAMMADIST(x,alpha,beta,cu)'''</div><br/>
+
<div style="font-size:30px">'''GAMMADIST(x,alpha,beta,cumulative,accuracy)'''</div><br/>
 
*<math>x</math> is the value of the distribution,
 
*<math>x</math> is the value of the distribution,
 
*<math>alpha</math> and <math>beta</math> are the value of the parameters
 
*<math>alpha</math> and <math>beta</math> are the value of the parameters
*<math>cu</math> is the logical value like true or false.
+
*<math>cumulative</math> is the logical value like true or false.
 +
*<math>accuracy</math> gives accurate value of the solution.
  
 
==Description==
 
==Description==
Line 8: Line 9:
 
*The Gamma Distribution can be used in a queuing models like, the amount of rainfall accumulated in a reservoir.
 
*The Gamma Distribution can be used in a queuing models like, the amount of rainfall accumulated in a reservoir.
 
*This distribution is the Continuous Probability Distribution with two parameters <math>\alpha</math> and <math>\beta</math>.
 
*This distribution is the Continuous Probability Distribution with two parameters <math>\alpha</math> and <math>\beta</math>.
*In  <math>GAMMADIST(x,alpha,beta,cu)</math>, <math>x</math> is the value of the distribution, <math>\alpha</math> is called shape parameter and <math>\beta</math> is the rate parameter of the distribution and <math>cu</math> is the logical value like TRUE or FALSE.
+
*In  <math>GAMMADIST(x,alpha,beta,cumulative,accuracy)</math>, <math>x</math> is the value of the distribution, <math>\alpha</math> is called shape parameter and <math>\beta</math> is the rate parameter of the distribution and <math>cumulative</math> is the logical value like TRUE or FALSE.
*If <math>cu</math> is TRUE, then this function gives the Cumulative Distribution value and if is FALSE then it gives the Probability Density Function.  
+
*If <math>cumulative</math> is TRUE, then this function gives the Cumulative Distribution value and if is FALSE then it gives the Probability Density Function.
 +
*<math>cumulative</math> gives accurate value of the solution.  
 
*The gamma function is defined by :
 
*The gamma function is defined by :
 
<math>Gamma(t) = \int\limits_{0}^{\infty}x^{t-1} e^{-x} dx</math>.  
 
<math>Gamma(t) = \int\limits_{0}^{\infty}x^{t-1} e^{-x} dx</math>.  
Line 29: Line 31:
  
 
==Examples==
 
==Examples==
 +
#GAMMADIST(8.15372,5,7,TRUE)=0.006867292
 +
#GAMMADIST(20.78542,2,6,TRUE)=0.860283293
 +
#GAMMADIST(20.78542,2,6,FALSE)=0.01806997
 +
#GAMMADIST(45.6523,9,4,FALSE)=0.019724471
 +
#GAMMADIST(8.15372,5,7,TRUE,0.5)= 0.00693316259
 +
#GAMMADIST(8.15372,5,7,TRUE,0.9)=0.0067648564
  
 
==See Also==
 
==See Also==

Revision as of 03:09, 16 June 2014

GAMMADIST(x,alpha,beta,cumulative,accuracy)


  • is the value of the distribution,
  • and are the value of the parameters
  • is the logical value like true or false.
  • gives accurate value of the solution.

Description

  • This function gives the value of the Gamma Distribution.
  • The Gamma Distribution can be used in a queuing models like, the amount of rainfall accumulated in a reservoir.
  • This distribution is the Continuous Probability Distribution with two parameters and .
  • In , is the value of the distribution, is called shape parameter and is the rate parameter of the distribution and is the logical value like TRUE or FALSE.
  • If is TRUE, then this function gives the Cumulative Distribution value and if is FALSE then it gives the Probability Density Function.
  • gives accurate value of the solution.
  • The gamma function is defined by :

.

  • It is for all complex numbers except the negative integers and zero.
  • The Probability Density Function of Gamma function using Shape, rate parameters is:

, for

, where is the natural number(e = 2.71828...), is the number of occurrences of an event, and is the Gamma function.
  • The Standard Gamma Probability Density function is:

.

  • The Cumulative Distribution Function of Gamma is :

, or

for any positive integer .
  • When alpha is a positive integer, then the distribution is called Erlang distribution.
  • If the shape parameter is held fixed, the resulting one-parameter family of distributions is a natural exponential family.
  • For a positive integer , when , , and , GAMMADIST returns (1 - CHIDIST(x)) with degrees of freedom.
  • This function shows the result as error when
1.Any one of the argument is non numeric
2.,  or 

Examples

  1. GAMMADIST(8.15372,5,7,TRUE)=0.006867292
  2. GAMMADIST(20.78542,2,6,TRUE)=0.860283293
  3. GAMMADIST(20.78542,2,6,FALSE)=0.01806997
  4. GAMMADIST(45.6523,9,4,FALSE)=0.019724471
  5. GAMMADIST(8.15372,5,7,TRUE,0.5)= 0.00693316259
  6. GAMMADIST(8.15372,5,7,TRUE,0.9)=0.0067648564

See Also

References

Gamma Distribution