Difference between revisions of "Manuals/calci/BINOMIAL"
Jump to navigation
Jump to search
Line 32: | Line 32: | ||
#=BINOMIAL(12,12)=1 | #=BINOMIAL(12,12)=1 | ||
#=BINOMIAL(1,-1) = 0 | #=BINOMIAL(1,-1) = 0 | ||
+ | |||
+ | ==Related Videos== | ||
+ | |||
+ | {{#ev:youtube|tWIa6Dovirs|280|center|BINOMIAL}} | ||
==See Also== | ==See Also== | ||
Line 38: | Line 42: | ||
==References== | ==References== | ||
+ | *[http://en.wikipedia.org/wiki/Binomial_distribution Binomial Distribution] | ||
+ | *[http://en.wikipedia.org/wiki/Binomial_coefficient Binomial Coefficient] |
Revision as of 13:24, 16 April 2015
BINOMIAL(n,k)
- is the number of items.
- is the number of selection.
Description
- This function gives the coefficent of the binomial distribution.
- Binomial coefficient is the set of positive integer which equals the number of combinations of k items that can be selected from a set of n items.
- The coefficients satisfy the Pascals recurrence.
- The binomial coefficents are denoted by and it is read by n choose k.
- It is the coefficient of the term in the polynomial expansion of the binomial thorem .
- The coefficient is occur in the formula of binomial thorem:
where .
- To find the coefficient of the binomial ,we can use several methods.
1. Recursive formula 2. Multiplicative formula 3. Factorial formula.
- 1.Recursive Formula:
for and .
- 2. Multiplicative formula:
- 3.Factorial formula:
where ,and which is zero when .
- Also for the initial values for .
- Most compact formula for the coefficient of the binomial value is Factorial formula.
- Factorial formula is symmetric of the combination formula.
Examples
- =BINOMIAL(10,3)= 120
- =BINOMIAL(20,7)= 77520
- =BINOMIAL(15,0)= 1
- =BINOMIAL(12,12)=1
- =BINOMIAL(1,-1) = 0