Difference between revisions of "Manuals/calci/FTESTANALYSIS"

From ZCubes Wiki
Jump to navigation Jump to search
Line 31: Line 31:
  
 
==Examples==
 
==Examples==
 +
1.
 
{| class="wikitable"
 
{| class="wikitable"
 
|+Spreadsheet
 
|+Spreadsheet
Line 48: Line 49:
 
|32 || 11
 
|32 || 11
 
|}
 
|}
FTESTANALYSIS(A1:A4,B1:B4,0.5,TRUE)
+
=FTESTANALYSIS(A1:A4,B1:B4,0.5,TRUE)
  
 
{| class="wikitable"  
 
{| class="wikitable"  
Line 71: Line 72:
  
 
2.
 
2.
{| class="wikitable"  
+
{| class="wikitable"
|+ DATA1
+
|+Spreadsheet
|-  
+
|-
| 5
+
! !! A !! B
| 8
+
|-
| 12
+
! 1
| 45
+
|5 || 10
| 23
+
|-
 +
! 2
 +
|8 || 20
 +
|-
 +
! 3
 +
|12 || 30
 +
|-
 +
! 4
 +
|45 || 40
 +
|-
 +
! 5
 +
|23 || 50
 
|}
 
|}
  
 +
=FTEST(A1:A5,B1:B5,0.30,false)
 
{| class="wikitable"  
 
{| class="wikitable"  
|+ DATA2
+
|-
|-  
+
! !!Variable1 !! Variable2
| 10
+
|-
| 20
+
| Mean || 18.6 || 30
| 30
+
|-
| 40
+
| Variance || 264.29999999999995 || 250
| 50
+
|-
|}
+
| Observations || 5 || 5
=FTEST(A1:A5,C1:C5)=0.9583035732212274 
+
|-
3.
+
| Degree Of Freedom || 4 || 4
{| class="wikitable"
+
|-
|+ DATA1
+
| F-Value || 1.0572 ||
|-  
+
|-
| 14
+
| P(F<=f) one-tail || 0.4791517866106137 ||
| 26
+
|-
| 37
+
| F Critical one-tail || 1.7528541706121352 ||
|}
 
 
 
{| class="wikitable"
 
|+ DATA2
 
|-  
 
| 45
 
| 82
 
| 21
 
|17
 
|}
 
FTEST(B1:B3,C1:C4} = 0.26412211240525474
 
 
 
4.
 
{| class="wikitable"
 
|+ DATA1
 
|-  
 
| 14
 
|}
 
{| class="wikitable"
 
|+ DATA1
 
|-
 
| 45
 
| 65
 
 
|}
 
|}
=FTEST(B1,C2:C3)=NAN
 
  
 
==See Also==
 
==See Also==

Revision as of 09:55, 3 June 2015

FTESTANALYSIS(ar1,ar2,alpha,newtableflag)


  • and are array of data.
  • is the significance level.
  • is the logical value.

Description

  • This function gives the analysis of variance.
  • This statistics used to determine the significant difference of three or more variables or multivariate collected from experimental

research.

  • So this analysis is depending on the hypothesis.
  • The hypotheses for this test are
  (null hypothesis, variances are equal)
  (alternative hypothesis, variances are not equal)
  • For example, the comparison of SCORES across GROUPS,where there are two groups.
  • The purpose is to determine if the mean SCORE on a test is different for the two groups tested (i.e., control and treatment groups)
  • In FTESTANALYSIS(ar1,ar2,alpha,newtableflag) where is the data of first array, is the data of second array.
  • is the significance level which ranges from 0 to 1.
  • is the logical value like TRUE or FALSE.
  • TRUE is indicating the result will display in new worksheet.Suppose we are omitted the lv value it will consider the value as FALSE.
  • The F statistic of this function calculated by:

has an F-distribution with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n−1} and Failed to parse (syntax error): {\displaystyle m−1} degrees of freedom.

  • Also is the sample variance of first set of values.
  • And is the sample variance of second set of values.
  • If the f-value from the test is higher than the f-critical value then the null hypothesis should be rejected and the variances are unequal.
  • So the following cases will occur:
  • If the variances are assumed to NOT be equal, proceed with the t-test that assumes non-equal variances.
  • If the variances are assumed to be equal, proceed with the t-test that assumes equal variances.
  • In this function the array may be any numbers, names, or references that contains numbers.
  • values are not considered if the array contains any text, logical values or empty cells.

When the or is less than 2 or the variance of the array value is zero, then this function will return the result as error.

Examples

1.

Spreadsheet
A B
1 15 21
2 27 12
3 19 30
4 32 11

=FTESTANALYSIS(A1:A4,B1:B4,0.5,TRUE)

Variable1 Variable2
Mean 23.25 18.5
Variance 58.916666666666664 79
Observations 4 4
Degree Of Freedom 3 3
F-Value 0.7457805907172995
P(F<=f) one-tail 0.407624533735915
F Critical one-tail 1


2.

Spreadsheet
A B
1 5 10
2 8 20
3 12 30
4 45 40
5 23 50

=FTEST(A1:A5,B1:B5,0.30,false)

Variable1 Variable2
Mean 18.6 30
Variance 264.29999999999995 250
Observations 5 5
Degree Of Freedom 4 4
F-Value 1.0572
P(F<=f) one-tail 0.4791517866106137
F Critical one-tail 1.7528541706121352

See Also

References

F Test