Difference between revisions of "Manuals/calci/BETAFUNCTION"

From ZCubes Wiki
Jump to navigation Jump to search
Line 6: Line 6:
 
*Beta function  is also called the Euler integral of the first kind.  
 
*Beta function  is also called the Euler integral of the first kind.  
 
*To evaluate the Beta function we usually use the Gamma function.
 
*To evaluate the Beta function we usually use the Gamma function.
<math>B(x,y)=\frac{Gamma(x)Gamma(y)}{Gamma(x+y)}</math>.
+
<math>B(x,y)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}</math>.
 
*For x,y positive we define the Beta function by:
 
*For x,y positive we define the Beta function by:
 
<math>B(x,y)= \int\limits_{0}^{1} t^{x-1}(1-t)^{y-1} dt</math>
 
<math>B(x,y)= \int\limits_{0}^{1} t^{x-1}(1-t)^{y-1} dt</math>

Revision as of 14:44, 7 December 2016

BETAFUNCTION (a,b)


  • and are any positive real numbers.

Description

  • This function returns the value of the Beta function.
  • Beta function is also called the Euler integral of the first kind.
  • To evaluate the Beta function we usually use the Gamma function.

.

  • For x,y positive we define the Beta function by: