Difference between revisions of "Manuals/calci/POISSON"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "==poisson")
 
Line 1: Line 1:
==poisson
+
<div style="font-size:30px">'''POISSON(x,m,cu)'''</div><br/>
 +
*<math>x</math>    is the number of events.
 +
*<math>m </math> is the mean
 +
*<math>cu</math> is the logical value like TRUE or FALSE.
 +
 
 +
==Description==
 +
*This function gives the value of the Poisson distribution.
 +
*The Poisson distribution is a discrete probability distribution for the counts of events that occur randomly in a given interval of time.
 +
*It is  is used to model the number of events occurring within a given time interval.
 +
*In <math>POISSON(x,m,cu)</math>, <math>x</math> is the number of events in a given interval of time, <math>m </math> is the Average Numeric value and <math>cu</math> is the logical value.
 +
*If it is TRUE, this function will give the Cumulative Poisson Probability with the number of random events between <math>0</math> and <math>x</math>(included).
 +
*If it is FALSE, this function will give the Poisson Probability Mass function with the number of events occurring will be exactly <math>x</math>.
 +
*The <math>POISSON</math>probability mass function is:
 +
<math> f(x,\lambda)=\frac{\lambda^x.e^{-\lambda}}{x!}</math>
 +
<math>x=0,1,2...</math> where <math> \lambda </math> is the shape parameter and <math>\lambda > 0</math>. <math>e</math> is the base of the natural logarithm (e=2.718282).
 +
*The Cumulative Poisson Probability  function is:
 +
<math>F(k,\lambda)=\sum_{k=0}^x \frac{e^{-\lambda} .\lambda^k}{k!}</math>.
 +
*This function will return the result as error when
 +
1.<math>x</math> or <math>m</math> is non-numeric.
 +
2.<math>x<0</math> or <math>m<0</math>.
 +
 
 +
==Examples==
 +
#POISSON(10,3,TRUE) = 0.9997076630493528
 +
#POISSON(10,3,FALSE) = 0.0008101511794681433
 +
#POISSON(21.7,7.54,TRUE) = 0.9999955033358848
 +
#POISSON(21.7,7.54,FALSE) = 0.00000948031184308478
 +
 
 +
==See Also==
 +
*[[Manuals/calci/EXPONDIST  | EXPONDIST ]]
 +
 
 +
==References==
 +
[http://en.wikipedia.org/wiki/Poisson_distribution Poisson distribution ]

Revision as of 13:35, 15 December 2016

POISSON(x,m,cu)


  • is the number of events.
  • is the mean
  • is the logical value like TRUE or FALSE.

Description

  • This function gives the value of the Poisson distribution.
  • The Poisson distribution is a discrete probability distribution for the counts of events that occur randomly in a given interval of time.
  • It is is used to model the number of events occurring within a given time interval.
  • In , is the number of events in a given interval of time, is the Average Numeric value and is the logical value.
  • If it is TRUE, this function will give the Cumulative Poisson Probability with the number of random events between and (included).
  • If it is FALSE, this function will give the Poisson Probability Mass function with the number of events occurring will be exactly .
  • The probability mass function is:

where is the shape parameter and . is the base of the natural logarithm (e=2.718282).

  • The Cumulative Poisson Probability function is:

.

  • This function will return the result as error when
1. or  is non-numeric.
2. or .

Examples

  1. POISSON(10,3,TRUE) = 0.9997076630493528
  2. POISSON(10,3,FALSE) = 0.0008101511794681433
  3. POISSON(21.7,7.54,TRUE) = 0.9999955033358848
  4. POISSON(21.7,7.54,FALSE) = 0.00000948031184308478

See Also

References

Poisson distribution