Difference between revisions of "Bartlett'sTest"

From ZCubes Wiki
Jump to navigation Jump to search
Line 45: Line 45:
 
!8
 
!8
 
|54 || 74 || 58 || 93
 
|54 || 74 || 58 || 93
 +
|}
 +
=BARTLETTSTEST(A1:A8,B1:B8,C1:C8,D1:D8,0.05,true)
 +
{| class="wikitable"
 +
|+BARTLETT'S TEST
 +
|-
 +
! !!DATA-0!!DATA-1!! DATA-2!!DATA-3
 +
|-
 +
|MEAN||60.375||77.875||78||71.875||0.22688||0.03081
 +
|-
 +
|VARIANCE || 214.26785714285714 || 157.55357142857142 || 164.57142857142858 || 181.55357142857142
 +
|-
 +
|LNVARIANCE || 5.367226901229239 || 5.059765536486956 || 5.1033446922005234 || 5.201550769540011
 +
|-
 +
|COUNT || 8 || 8 || 8 || 8
 +
|-
 +
|DF || 7 || 7 || 7 || 7
 +
|-
 +
|1/DF || 0.14285714285714285 || 0.14285714285714285 || 0.14285714285714285 || 0.14285714285714285
 
|}
 
|}

Revision as of 08:36, 9 May 2017

BARTLETTSTEST(DataRange,ConfidenceLevel,NewTableFlag)


  • is the array of x values.
  • is the value from 0 to 1.
  • is either TRUE or FALSE. TRUE for getting results in a new cube. FALSE will display results in the same cube.

Description

  • Bartlett's test is used to test if k samples are from populations with equal variances.
  • Bartlett's test is sensitive to departures from normality.
  • That is, if the samples come from non-normal distributions, then Bartlett's test may simply be testing for non-normality.
 
  • B is the Bartlett's test static.
  • is the pooled variance across all groups.

Result

  • If p-value is greater than BCriticl value, reject the null hypothesis.
  • Else retain null hypothesis.

Example

Spreadsheet
A B C D
1 51 82 79 85
2 87 91 84 80
3 50 92 74 65
4 48 80 98 71
5 79 52 63 67
6 61 79 83 51
7 53 73 85 63
8 54 74 58 93

=BARTLETTSTEST(A1:A8,B1:B8,C1:C8,D1:D8,0.05,true)

BARTLETT'S TEST
DATA-0 DATA-1 DATA-2 DATA-3
MEAN 60.375 77.875 78 71.875 0.22688 0.03081
VARIANCE 214.26785714285714 157.55357142857142 164.57142857142858 181.55357142857142
LNVARIANCE 5.367226901229239 5.059765536486956 5.1033446922005234 5.201550769540011
COUNT 8 8 8 8
DF 7 7 7 7
1/DF 0.14285714285714285 0.14285714285714285 0.14285714285714285 0.14285714285714285