Difference between revisions of "Manuals/calci/QUATERNION"

From ZCubes Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
*The imaginary units are  satisfy certain conditions:
 
*The imaginary units are  satisfy certain conditions:
 
*<math>i^{2}=j^2=k^2=ijk= -1</math>.
 
*<math>i^{2}=j^2=k^2=ijk= -1</math>.
*<math>i*j =k=−j*i</math>,<math>j*k = i = −k*j</math>, <math>k*i = j = −i*k</math>
+
*<math>i*j =k= −j*i</math>,<math>j*k = i = −k*j</math>, <math>k*i = j = −i*k</math>
  
 
==Examples==
 
==Examples==

Revision as of 13:27, 17 January 2018

QUATERNION (a,b,c,d)


  • and are any real numbers.

Description

  • This function shows the coefficient of the Quarternion.
  • In , and are any real numbers.
  • Quartenion is a complex number of the form w + xi + yj + zk, where w, x, y, z are real numbers and i, j, k are imaginary units.
  • The imaginary units are satisfy certain conditions:
  • .
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i*j =k= −j*i} ,Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j*k = i = −k*j} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k*i = j = −i*k}

Examples

  1. QUATERNION(9,2,3,4) = 9 2 3 4
  2. QUATERNION(8,-2,4,-5) = 8 -2 4 -5
  3. QUATERNION(-9,-12,-16,-20) = -9 -12 -16 -20

See Also

References

Quartenion