Difference between revisions of "Manuals/calci/Pascal Triangle Fun"
Jump to navigation
Jump to search
Line 67: | Line 67: | ||
PASCALTRIANGLE(10,true) | PASCALTRIANGLE(10,true) | ||
<pre> | <pre> | ||
+ | |||
+ | ==Lucas, Fibonacci, Golden Ratio Relationship == | ||
+ | |||
+ | <pre> | ||
+ | FIBONACCI(50) | ||
+ | |||
+ | LUCAS(50) | ||
+ | |||
+ | FIBONACCI(50) | ||
+ | .pieces(2) | ||
+ | .map(r=>r[1]/r[0]) | ||
+ | |||
+ | GOLDENRATIO() | ||
+ | |||
+ | LUCAS(50) | ||
+ | .pieces(2) | ||
+ | .map(r=>r[1]/r[0]) | ||
+ | |||
+ | ROUND((GOLDENRATIO())^(1..10)) | ||
+ | |||
+ | [(1+√5)/2,(1+√5)/2] | ||
+ | |||
+ | ops.on; | ||
+ | [(1+√5d100)/2,(1-√5d100)/2] | ||
+ | |||
+ | </pre> |
Revision as of 21:25, 6 August 2020
Pascal Triangle Fun
Sierpiński triangle
//with 32 m=32; pt=PASCALTRIANGLE(m).$(x=>x%2) a=pt .map( function (r,i) { var prefix= (REPEATCHAR(" ",(2*m-(2*i+1))/2).split("")); return( prefix .concat(r.join(", ,").split(",")) .concat(prefix) ) } ); (a);
Fibonacci and Pascal Triangle
FIBONNACI(100) b=PASCALTRIANGLE(100) b.map( function calcfib(r,i,d) { var fib=0; var j=0; for(var xi=i;xi>=0;xi--) { fib+=isNaN(d[xi][j])?0:d[xi][j]; j++; } return(fib) } )
Pretty Pascal Triangle
m=10; pt=PASCALTRIANGLE(m) pt .map( function (r,i) { var prefix= (REPEATCHAR(" ",(2*m-(2*i+1))/2).split("")); return( prefix .concat(r.join(", ,").split(",")) .concat(prefix) ) } ); <pre> Now we can use: <pre> PASCALTRIANGLE(10,true) <pre> ==Lucas, Fibonacci, Golden Ratio Relationship == <pre> FIBONACCI(50) LUCAS(50) FIBONACCI(50) .pieces(2) .map(r=>r[1]/r[0]) GOLDENRATIO() LUCAS(50) .pieces(2) .map(r=>r[1]/r[0]) ROUND((GOLDENRATIO())^(1..10)) [(1+√5)/2,(1+√5)/2] ops.on; [(1+√5d100)/2,(1-√5d100)/2]