Manuals/calci/HYPGEOMDIST

Revision as of 01:41, 10 December 2013 by Jayaram (talk | contribs)
HYPGEOMDIST(n1,n2,n3,n4)


  • is the sample's success.
  • is the sample's size.
  • is population's success.
  • is the population size.

Description

  • This function gives the result of Hypergeometric distribution.
  • This distribution is a discrete probability distribution which is contrast to the binomial distribution.
  • A hypergeometric random variable is the number of successes that result from a hypergeometric experiment.
  • The probability distribution of a hypergeometric random variable is called a hypergeometric distribution.
  • In HYPGEOMDIST(n1,n2,n3,n4) where n1 is thenumber of items in the Sample that are classified as successes.
  • n2 is the total number of items in the sample.
  • n3 is thenumber of items in the population that are classified as successes and n4 is the total number of items in the sample.
  • The following conditions are applied to the Hypergeometric distribution:
  1. This distribution is applies to sampling without replacement from a finite population whose elements can be classified into two categories like success or Failure.
  2. The population or set to be sampled consists of N individuals, objects,or elements
  3. Each individual can be success (S) or a failure (F),

and there areM successes in the population.

  1. A sample of n individuals is selected without replacement in such a way that each subset of size n is equally likely to be chosen. The Hyper geometric probability distribution is:

P(X=x)=h(x;n,M,N)=(M (N-M

                                    x)           n-x)         /(N     
                                                                      n)  for x is an integer satisfying   max(0, n-N+M)<=x<=min(n,M). where x is sample's success.
  • n is the sample's size.
  • M is population's success and N is the population size.
  • Here we can give any positive real numbers.
  • Suppose we are assigning any decimals numbers it will change in to Integers.
  • This function will give result as error when
  1. Any one of the argument is nonnumeric.
  2. n1<0 or n1 is greater than the smaller value of n2 or n3.
  3. n1 is less than the bigger of 0 or(n2-n4+n3)
  4. n2<=0 or n2>n4
  5. n3<=0 or n3>n4 or n4<=0"

Examples

  1. HARMEAN(1,2,3,4,5)=2.18978102189781
  2. HARMEAN(20,25,32,41)=27.4649361523969
  3. HARMEAN(0.25,5.4,3.7,10.1,15.2)=1.0821913906985883
  4. HARMEAN(3,5,0,2)=NAN
  5. HARMEAN(1,-2,4)=NAN

See Also


References

Correlation