Manuals/calci/LOGNORMDIST

Revision as of 00:19, 19 December 2013 by Devika (talk | contribs) (→‎Description)
LOGNORMDIST((x,m,sd)


  • is the value , is the mean of ,
  • And is the standard deviation of .

Description

  • This function gives the value of the cumulative log normal distribution.
  • This distribution is the continuous probability distribution.
  • Lognomal distribution is also called Galton's distribution.
  • A random variable which is log-normally distributed takes only positive real values.
  • Suppose   is normally distributed function ,then   also normally distributed
  •   also normally distributed.
  • Let the normal distribution function   and its mean= Failed to parse (syntax error): {\displaystyle μ} , standard deviation = Failed to parse (syntax error): {\displaystyle σ}
  • Then the lognormal cumulative distribution is calculated by:Failed to parse (syntax error): {\displaystyle F(x,μ,σ)=1/2[1+(erf(ln(x)-μ)/σsqrt(2)= φ[(ln(x)-μ)/σ]} where erf is the error function( the error function (also called the Gauss error function) is a special function of sigmoid shape which occurs in probability, statistics and partial differential equations)
  • And φ is the cumulative distribution function of the standard normal distribution.
  • This function will give the result as error when
  • 1. Any one of the argument is nonnumeric.
  • 2.suppose   or  

Examples

  1. LOGNORMDIST(2,5.4,2.76)=0.044061652
  2. LOGNORMDIST(10,24.05,12.95)=0.046543186
  3. LOGNORMDIST(50,87.0036,42.9784)=0.026597569
  4. LOGNORMDIST(-10,5,2)=NAN

See Also