Manuals/calci/HANKEL
HANKEL
MATRIX("HANKEL",order)
- is the order of the hankel matrix.
Description
- This function gives the matrix with the property of hankel matrix.
- A hankel matrix is a square matrix with constant skew diagonals.
- If the i,j element of Hankel matrix A is denoted , then we have
.
- i.e., The form of Hankel matrix is:
.
- A hankel matrix is also called as catalecticant matrix.
- Here MATRIX("hankel") is gives the hankel matrix of order 3 with decimal values.
- A Hankel matrix is an upside-down Toeplitz matrix.
- A matrix whose entries along a parallel to the main anti-diagonal are equal, for each parallel.
- Equivalently, is a Hankel matrix if and only if there exists a sequence, such that ,If are square matrices, then is referred to as a block Hankel matrix.
Examples
- MATRIX("hankel")
0.6414852568414062 | 0.9679132911842316 | 0.6076015164144337 |
0.9679132911842316 | 0.6076015164144337 | 0.6414852568414062 |
0.6076015164144337 | 0.6414852568414062 | 0.9679132911842316 |
- MATRIX("hankel",5,1..10)
1 | 2 | 3 | 4 | 5 |
2 | 3 | 4 | 5 | 6 |
3 | 4 | 5 | 6 | 7 |
4 | 5 | 6 | 7 | 8 |
5 | 6 | 7 | 8 | 9 |
- MATRIX("hankel",5,-10..0)
-10 | -9 | -8 | -7 | -6 |
-9 | -8 | -7 | -6 | -5 |
-8 | -7 | -6 | -5 | -4 |
-7 | -6 | -5 | -4 | -3 |
-6 | -5 | -4 | -3 | -2 |
- MATRIX("hankel",4,["rice","water"])
rice | water | rice | water | |
water | rice | water | rice | |
rice | water | rice | water | |
water | rice | water | rice |