Manuals/calci/REGRESSION

Revision as of 21:43, 24 October 2013 by MassBot1 (talk | contribs) (Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''REGRESSIONANALYSIS'''(XRange, YRange, ConfidenceLevel, NewTableFlag) where, '''XRange '''- Input range sho...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

REGRESSIONANALYSIS(XRange, YRange, ConfidenceLevel, NewTableFlag)

where,

XRange - Input range should be one block.

YRange - Input range should be one block.

ConfidenceLevel - represents the confidence level for percentage nad value should in between 0 and 100.the default percentage is 95.

NewTableFlag - is the TRUE or FALSE.If set as TRUE,the result in new sheet. If NewTableFlag is omitted, it assumed to be FALSE.


Regression analysis is a technique used for the modeling and analysis of numerical data consisting of values of a dependent variable(response variable) and of one or more independent variables(explanatory variables).

Lets see an example in (Column3Row1)

=REGRESSIONANALYSIS(R1C1:R6C1, R1C2:R6C2, 95, TRUE)

REGRESSIONANALYSIS returns the result in new sheet(5Space).

=REGRESSIONANALYSIS(R1C1:R6C1, R1C2:R6C2, -5, TRUE)

RANKANDPERCENTILE returns the #ERROR(ConfidenceLevel=-5).


REGRESSION


Syntax

Remarks

Examples

Description

If ConfidenceLevel < 0 or ConfidenceLevel >100, REGRESSIONANALYSIS returns the #ERROR.

If Lengthof XRange != Lengthof YRange, it returns the #ERROR.


Column1 Column2 Column3 Column4
Row1 1 3 5Space
Row2 7 8
Row3 12 10
Row4 17 18 #ERROR
Row5 37 36
Row6 6 5

Regression Analysis
SUMMARY OUTPUT
Regression Statistics
Multiple R 0.9933541399262806
R Square 0.9867524473086807
AdjustedRSquare 0.9834405591358509
StandardError 1.6492920155683643
Observations 6

ANOVA
Source of Variation Sum of Squares Degree of Freedom Mean of Squares F Significance F
Regression: 810.452676722863 1 810.452676722863 297.9425620115529 0.0000661044188125954
Residual: 10.880656610470271 4 2.720164152617568
Total: 821.3333333333333 5

Coefficients Standard Error T Statistics Probability Lower 95% Upper 95% Lower95% Upper95%
Intercept -0.5146406388642397 1.0473758171565741 -0.4913619642865071 0.6489114785470887 -3.4226220244213423 2.393340746692863 -3.422622024421344 2.3933407466928646
X Variable 1.038598047914818 0.06017016854489271 17.26101277479262 0.00006610441881260698 0.8715388823047108 1.2056572135249252 0.8715388823047107 1.2056572135249252

RESIDUAL OUTPUT
Observation Predicted Y Residuals Standard Residuals
1 2.601153504880214 -1.6011535048802141 -1.0854015072917171
2 7.7941437444543045 -0.7941437444543045 -0.5383398997096632
3 9.871339840283941 2.128660159716059 1.4429915300597537
4 18.180124223602483 -1.1801242236024833 -0.7999911358813972
5 36.8748890860692 0.1251109139307971 0.08481109034532615
6 4.678349600709851 1.3216503992901493 0.8959299224777