Manuals/calci/EXPONDIST

From ZCubes Wiki
Revision as of 00:23, 29 November 2013 by Abin (talk | contribs) (→‎Description)
Jump to navigation Jump to search
EXPONDIST(x,Lambda,cum)


  • is the value of the function
  • is the value of the rate parameter
  • is the logical value like TRUE or FALSE

Description

  • This function gives the exponential distribution. This distribution used to model the time until something happens in the process.
  • This describes the time between events in a Poisson process i.e, a process in which events occur continuously and independently at a constant average rate.
  • For e.g Time between successive vehicles arrivals at a workshop.
  • In EXPONDIST(x, lambda,cu), xis the value of the function, lambda is called rate parameter and cu(cumulative) is the TRUE or FALSE. *This function will give the cumulative distribution function , when cu is TRUE,otherwise it will give the probability density function , when cu is FALSE.
  • Suppose we are not giving the cu value, by default it will consider the cu value is FALSE.
  • This function will give the error result when
1.  or  is non-numeric.
2.  or 

The probability density function of an exponential distribution is

or

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x;\lambda)= λe^{-\lambda x} .H(x)}
  • where λ is the rate parameter and H(x) is the Heaviside step function
  • This function is valid only on the interval [0,infinity).

The cumulative distribution function is : <maths>F(x,\lambda)={1-e^{-\lambda x}, x\ge0</maths>

or

F(x,λ)=1-e^{-\lambda x}.H(x).
  • The mean or expected value of the exponential distribution is: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E[x]=\frac{1}{ λ}}
  • The variance of the exponential distribution is: .