Manuals/calci/TTESTEQUALVARIANCES

From ZCubes Wiki
Revision as of 20:46, 24 October 2013 by MassBot1 (talk | contribs) (Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''TTESTTWOSAMPLESEQUALVARIANCES('''Array1, Array2, HypothesizeDiff, Alpha, NewTableFlag) where, '''Array1 '''...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

TTESTTWOSAMPLESEQUALVARIANCES(Array1, Array2, HypothesizeDiff, Alpha, NewTableFlag)

where,

Array1 - Input range should be one block.

Array2 - Input range should be one block.

HypothesizeDiff - represents the Hypothesized Mean Difference.A value 0 indicates that sample means are hypothesized to be equal.

Alpha - represents the significance level and value in range 0 to 1.

' 'NewTableFlag - is the TRUE or FALSE.If set as TRUE,the result in new sheet. If NewTableFlag is omitted, it assumed to be FALSE.

T-Test: Two Sample for equal variances determines whether two sample means are equal.

Lets see an example in (Column3Row1)

=TTESTTWOSAMPLESEQUALVARIANCES (R1C1:R6C1, R1C2:R6C2, 0, 0.05, TRUE)

TTESTTWOSAMPLESEQUALVARIANCES returns the result in new sheet(9Space).

=TTESTTWOSAMPLESEQUALVARIANCES(R1C1:R4C1,R1C2:R6C2, 0, 0.055, TRUE)

TTESTTWOSAMPLESEQUALVARIANCES returns the #ERROR(LengthofArray1 != LengthofArray2).


T-TEST : TWO SAMPLE ASSUMING EQUAL VARIANCES


Syntax

Remarks

Examples

Description

If the Alpha < 0 or Alpha >1, TTESTTWOSAMPLESEQUALVARIANCES returns the #ERROR.

TTESTTWOSAMPLESEQUALVARIANCES returns the #ERROR, if Length of Array1 != Length of Array2.


Column1 Column2 Column3 Column4
Row1 10 3 9Space
Row2 7 8
Row3 12 8
Row4 17 18 #ERROR
Row5 46 34
Row6 6 7

t-Test: Two-Sample Assuming Equal Variances
Variable1 Variable2
Mean 16.333333333333332 13
Variance 226.66666666666668 130.4
Observations 6 6
Pooled Variance 178.53333333333336
Hypothesized Mean Difference 0
Degree Of Freedom 10
T Statistics 0.4320954725359997
P(T<=t) One-tail 0.3374203531947199
T Critical One-tail 1.8124611201453893
P(T<=t) Two-tail 0.6748407063894398
T Critical Two-tail 2.2281388448257084