Difference between revisions of "Manuals/calci/CHOLESKY"

From ZCubes Wiki
Jump to navigation Jump to search
Line 37: Line 37:
 
<ol>
 
<ol>
 
<li>Determine <math>l_{11}</math> and <math>L_{21}</math></li>
 
<li>Determine <math>l_{11}</math> and <math>L_{21}</math></li>
<math>l_{11}</math> = <math>\sqrt{a_{11}}</math>
+
<math>l_{11}</math> = <math>\sqrt{a_{11}}</math>
<math>L_{21}</math> = <math>\frac{1}{l_{11}}A_{21}</math>
+
<math>L_{21}</math> = <math>\frac{1}{l_{11}}A_{21}</math>
 
<li>Compute <math>L_{22}</math> from </li>
 
<li>Compute <math>L_{22}</math> from </li>
<math>A_{22}-L_{21}L_{21}^{T}</math> = <math>L_{22}L_{22}^{T}</math>
+
<math>A_{22}-L_{21}L_{21}^{T}</math> = <math>L_{22}L_{22}^{T}</math>
 
*this is a Cholesky Factorization of order <math>n-1</math>
 
*this is a Cholesky Factorization of order <math>n-1</math>
 
</ol>
 
</ol>

Revision as of 07:42, 10 April 2015

CHOLESKY(arr)


  • is the array of numeric elements

Description

  • This function gives the value of Cholesky factorization.
  • It is called Cholesky Decomposition or Cholesky Factorization.
  • The Cholesky Factorization is only defined for symmetric or Hermitian positive definite matrices.
  • Every positive definite matrix A can be factored as =
 is lower triangular with positive diagonal elements
 is is the conjugate transpose value of 
  • Every Hermitian positive-definite matrix has a unique Cholesky decomposition.
  • Here , is set of values to find the factorization value.
  • Partition matrices in = is

Algorithm

  1. Determine and
  2. = =
  3. Compute from
  4. =
    • this is a Cholesky Factorization of order

ZOS Section

Examples

1. =CHOLESKY([[16,32,12],[12, 18, 0],[ -5, 0, 11]])

Result
4 0 0
3 3 0
-1.25 1.25 2.80624

2. =CHOLESKY([[25, 15, -5],[15, 18, 0],[ -5, 0, 11]])

Result
5 0 0
3 3 0
-1 1 3

See Also