From ZCubes Wiki
Jump to navigation Jump to search


  • Where 'number' is the binary number to be converted to decimal number.
  • 'places' is the number of characters to display the output.

BIN2DEC() converts a binary number to a decimal number.



For example, BIN2DEC(101,3) returns 005 as a result.

            BIN2DEC(11110) returns 30 as a result. 
  • This function is used to convert a binary number to a decimal number.
  • Binary number is represented using digits 1 or 0 only. The number can also be entered in text format (e.g "101").
  • The conversion can be obtained for a binary number upto 17 bits for positive numbers and 10 bits for negative numbers.
  • The most significant bit represents the 'sign' of the number (0=positive, 1=negative). Negative numbers are represented using 2's complement notation.
  • Positive numbers may be from 0 (000000000) to 130046 (11111111111111110) and negative numbers from -1 (1111111111) to -512 (1000000000).
  • A number preceding with '0' (e.g 01111111111) should be written in text format ("01111111111") to avoid confusion with octal numbers.
  • 'places' argument can be omitted. Then, Calci displays the octal output with minimum number of characters necessary.
  • 'places' is used for padding the output with leading '0's.
  • A binary number (e.g '101') is converted to decimal number (base 2) as -
(1*2^2)+(0*2^1)+(1*2^0)=4+0+1= 5
  • If the number is not a valid number, 'Calci' returns an #ERROR message.

Below are few examples that show the use of combination of functions and get the result in decimal -

1)SUM(BIN2DEC(100),BIN2DEC(101)) returns 9 as a result.

2)AVERAGE(BIN2DEC(100) + BIN2DEC(101)) returns 9 as a result.

3)BIN2DEC(110)+BIN2DEC(101)-BIN2DEC(100) returns 7 as a result.


Binary Input Decimal Output
100 4
11110,3 030
1010101010101010 43690
1111111111 1023
1111000000 960
1000000000 512

Related Videos


See Also