Difference between revisions of "Z3 Language Tests"

From ZCubes Wiki
Jump to navigation Jump to search
Line 30: Line 30:
 
 
 
 
-Matrix Operators
+
=Matrix Operators=
 
|a|;
 
|a|;
  
Line 38: Line 38:
  
 
b=34
 
b=34
 +
 +
=Object Initialization=
  
 
a=[3,4,2..20]
 
a=[3,4,2..20]
Line 43: Line 45:
 
a={"car":a}
 
a={"car":a}
  
 +
=Creating Multi-Dimensional Matrices of Required Sizes=
 
a=|4x3x3|
 
a=|4x3x3|
  
+
=Matrix Operators=
 +
 
 
a=|3||*||4|
 
a=|3||*||4|
  
Line 67: Line 71:
  
 
1..100@"x^2"
 
1..100@"x^2"
 +
 +
 +
=Combanatorial Arguments and Implicit Looping=
  
 
CHIDIST(1..100,2..3) .graph(1,0)
 
CHIDIST(1..100,2..3) .graph(1,0)
 +
  
 
[Other]
 
[Other]
Line 126: Line 134:
  
 
a=[1  (a+b); 2;[3,4]; 3]
 
a=[1  (a+b); 2;[3,4]; 3]
 +
 +
=Javascript Code & Z3=
  
 
function z()
 
function z()
Line 154: Line 164:
  
 
[["cats1","dogs1"],"birds"]>>>>[[2,[COS]],[SIN]]
 
[["cats1","dogs1"],"birds"]>>>>[[2,[COS]],[SIN]]
 +
 +
=Series Comprehension=
  
 
[#a-z,#A-Z,1..10,4..500]
 
[#a-z,#A-Z,1..10,4..500]
Line 176: Line 188:
  
 
a = a < 34 ? 3
 
a = a < 34 ? 3
 +
 +
=Range Referencing=
  
 
#TABLE3!A3:E6  
 
#TABLE3!A3:E6  
Line 206: Line 220:
  
 
E=m*c^2;
 
E=m*c^2;
 +
 +
=Simple, Beautiful Notations=
  
 
a=5!;
 
a=5!;
 +
 +
b=5%;
  
 
a=(a+x)!;
 
a=(a+x)!;
Line 265: Line 283:
  
 
FACTTRIPLE:=PRODUCT(n..1..-3)   
 
FACTTRIPLE:=PRODUCT(n..1..-3)   
 +
 +
=Conditional Matrix Projection=
  
 
1..10|x<4|
 
1..10|x<4|

Revision as of 15:52, 30 March 2016

Here are test cases to try out on ZCubes Code Cubes. Please note that all of the below follow the Z3 Language (Enhanced from Javascript), and hence apart from being simple, it gives you full programming capability.


Simple Matrix Creation

a=[1 2; 3]

a=[[1,2],[3]]

a=[1 2; 3 4]

a=[1 20; 2 3]

a=[[1, 20],[2, 3]]

a=[[1, 20],[2, [3 4]]];

a=[[1, 20],[2, [3; 4]]];

a=[[1, 20],[2, [3; 4;]]]; // worked with after 4 nothing was taken. Is that something to change later? with a null?

a=[1 20; 2;[3,4]; 3]

a=[1, (a+b); 2;[3,4]; 3]

a=[1*(a+b); 2;[3,4]; 3]

a=[1*(a+b); 2;[3,4+34]; 3];


Matrix Operators

|a|;

|10|;

a=|44|

b=34

Object Initialization

a=[3,4,2..20]

a={"car":a}

Creating Multi-Dimensional Matrices of Required Sizes

a=|4x3x3|

Matrix Operators

a=|3||*||4|

a=|5x5|

a=|5|

|10x3|

a=a|x+3|b;

a=|5||+||5|

a=|5||\||5| //for INTDIV

a=|5||/\||5| //for DIVPARTS

a=|5||%||5| //for MATRIXMOD

a=|3||CHIDIST||4| // should we make this CHIDIST with MOP? Could decide later for MATRIXOPS

1..100@"x^2"


Combanatorial Arguments and Implicit Looping

CHIDIST(1..100,2..3) .graph(1,0)


[Other]

[1..2,1..4,1..20]@"x^3+y^2+z^3"

FOR 20..30 "det(MAGICSQUARE(x))";

a=FOR 1..100 SIN;

a= FOR 20..30 "det(MAGICSQUARE(x))";


var a=FOR 20..30 "det(MAGICSQUARE(x))";

var a=FOR 20..30 "det(MAGICSQUARE(x))",b=FOR 1..100 COS;

radpiby3

a=SIN(radpiby3)

1..100.fillwith(1..10)

(1..100).fillwith(1..10)

(1..100..10).fillwith(1..10)

1..100.fillwith(10..100).$(CIRCLE)

1..100 .fillwith(10..100).$(CIRCLE)

1..100..130.fillwith(10..100).$(CIRCLE)

SIN@1..100@COS

SIN@1..100

1..100@COS

1..100..10@COS

1..100..10.fillwith(10..100).$(CIRCLE)

1..100.23..1023.1 .fillwith(10..1020).$(CIRCLE)

1..100..10.fillwith(1..10)

FOR 20..30 "det(MAGICSQUARE(x))";

FOR 20..30 "det(MAGICSQUARE(x))";

FOR 20..30 "det(MAGICSQUARE(x))";

1...100.0343..103.fillwith(1..10)


a=[1 (a+b); 2;[3,4]; 3]

Javascript Code & Z3

function z() { if(a<3) { return(false); } }

function () { if(a<3) { return(false) } }

A=(|3x4|@4.3)@SIN

|4|.$i([SUM,SIN,COS]);

|4|.$i(SUM,SIN,COS)

[["cats1","dogs1"],"birds"]<<<[[2,[COS]],[SIN]]

[["cats1","dogs1"],"birds"]<<<<[[2,[COS]],[SIN]]

[["cats1","dogs1"],"birds"]>>>>[[2,[COS]],[SIN]]

Series Comprehension

[#a-z,#A-Z,1..10,4..500]

a=#a-z

a=#1/1/16

var a=#;

b=#;

c=#;

d=#;

PMT(#1/1/2011,#2/2012) // worked

var a=#a-x;

b=#1/1/2011;

a = a < 34 ? 3

Range Referencing

#TABLE3!A3:E6

a=#TABLE3!A3:E6

a=#A3:E6

a=SIN(#D8:E11,#H11:K12)

#TABLE3!A3:E6

a=#TABLE3!A3:E6

a=#A3:E6

#D8:E11

#TABLE3!A3:E6

[1,2,undefined,#].$(SIN)

a=[#1/1/2011,#2/2/2015]

[1,2,undefined].$(SIN)

[1,2,undefined,#].$(SIN)

v:=u+a*t

E=m*c^2;

Simple, Beautiful Notations

a=5!;

b=5%;

a=(a+x)!;

a=(a+x)*!34;

a=(5!)!

a=5!! will not work.

a=34!P!3

a=34!C!3

a=34!P!3!C!3

var a=2;

v:=u+a*t;

var b=3;

var a=2;

var v:=u+a*t;

var b=3;


var a=2;

var v:=u+a*t;

var b=3;

var a=2;

var v:=u+a*t,d=34;

var b=3;

var a=#a-x,d=#1/1/2011;

# means undefined by itself.

ad := a+b

1..3**3.$d (SIN)

(1..3**3).$d (SIN)

PRODUCT(n..1..-3)

a=#,b=#,c=#

FACTTRIPLE=PRODUCT(n..1..-3)

FACTTRIPLE:=PRODUCT(n..1..-3)

Conditional Matrix Projection

1..10|x<4|

1..10|x?x<4|

1..10|x?x<4:u|

1..10|x?x<4:u|1..10

1..10|x?u+x<4:u|1..10


|4||x?x<4:false||34| ;

|4||x?x<4||34|;

|4||x?x<4||34| ;

|4||x?x<4:34+y+z||34|;

|4||x?x<4|;

|4||x<4|;

|1||x<4||x>10|


1..10|x<4&&y>9|2..20

a=3!

a=100..|x+y|3

..100

10..

1..10|x<4|

1..10|x<4|34

1..10|x^3&&x^3<3000?x|w


0..10@"SIN(x^2,1..10)" .graph()

0..10@("SIN(x^2,1..10)" .graph())

0..10@"SIN(x^2,1..23..10)".graph(30).sin()

0..10@"SIN(x^2,1..23..10)".graph(30).sin()

1..1000..100@["x^2",COS] .graph()

0..10@"SIN(x^2,1..10)" .graph()

0..10@("SIN(x^2,1..10)" .graph())

0..10@"SIN(x^2,1..23..10)".graph(30).sin()

0..10@"SIN(x^2,1..23..10)".graph(30).sin()

0..10@"SIN(x^2,1..10)" .graph()

SIN(x^2,1..10)


1..3**3.$d (SIN)

(1..3**3).$d (SIN)


(1..1000..100@["x^2",COS] .$(SIN)) @SIN

0..10@"SIN(x^2)" .graph()

0..10@"SIN(x^2)".graph()

1..10|x<4|34

1..10|(x?x<4)|

var a=FOR 20..30 "det(MAGICSQUARE(x))", b=FOR 1..100 COS;


a=[1*(a+b); 2;[3,4+34]; 3]

|a| |10|

a=[1*(a+b); 2;[3,4+34]; 3]; |a|; |10|

PMT(100000,44%,40)

a=FOR(PMT, 100000,41% ,1..12)


pmt12:=PMT(x,y,12);

PMT(1000,26%)

vary...

Θ=3+x;

Θ(34)

അത:=34+അതx;

അത(4)


/*Enter Code Here in Z3/Javascript...*/

var a=10;

for(var b=1;b<a;b++)

{

console.log(b)

}


/*Enter Code Here in Z3/Javascript...*/

function test()

{

var a=25;

c=[]

for(var b=1;b<a;b++)

{

c.push(b)

}

return(c);

}

test()