Difference between revisions of "Manuals/calci/MATRIXINVERSE"

From ZCubes Wiki
Jump to navigation Jump to search
 
(2 intermediate revisions by the same user not shown)
Line 5: Line 5:
 
*This function shows the inverse value of the given matrix.
 
*This function shows the inverse value of the given matrix.
 
*In <math>MATRIXINVERSE (a)</math>, <math>a</math> is any square matrix.
 
*In <math>MATRIXINVERSE (a)</math>, <math>a</math> is any square matrix.
*Inverse of a square matrix is also called reciprocal of a matrix and it is denoted by <math>A^-1</math>.
+
*Inverse of a square matrix is also called reciprocal of a matrix and it is denoted by <math>A^{-1}</math>.
 
*Consider the square matrix A has an inverse which should satisfies the following condition <math>|A|\ne 0</math>
 
*Consider the square matrix A has an inverse which should satisfies the following condition <math>|A|\ne 0</math>
 
*Also <math>AA^{-1}=I</math>(Identity matrix).
 
*Also <math>AA^{-1}=I</math>(Identity matrix).
Line 16: Line 16:
 
d  & -b    \\  
 
d  & -b    \\  
 
-c  & a
 
-c  & a
\end{bmatrix}</math> =\frac{1}{ad-bc} \begin{bmatrix}
+
\end{bmatrix}</math> =<math>\frac{1}{ad-bc} \begin{bmatrix}
 
d  & -b    \\  
 
d  & -b    \\  
 
-c  & a
 
-c  & a
Line 35: Line 35:
 
\end{bmatrix}}</math>
 
\end{bmatrix}}</math>
 
  where A=(ei-fh); B=-(di-fg);C=(dh-eg); D=-(bi-ch); E=(ai-cg); F=-(ah-bg); G=(bf-ce)  H=-(af-cd);I=(ae-bd)
 
  where A=(ei-fh); B=-(di-fg);C=(dh-eg); D=-(bi-ch); E=(ai-cg); F=-(ah-bg); G=(bf-ce)  H=-(af-cd);I=(ae-bd)
 +
 +
==Examples==
 +
1. MATRIXINVERSE([4,7;2,6])
 +
{| class="wikitable"
 +
|-
 +
| 0.6 || -0.7
 +
|-
 +
| -0.2 || 0.4
 +
|}
 +
2. MATRIXINVERSE([1,2,3;0,1,4;5,6,0])
 +
{| class="wikitable"
 +
|-
 +
| -24 || 18 || 5
 +
|-
 +
| 20 || -15 || -4
 +
|-
 +
| -5 || 4 || 1
 +
|}
 +
 +
==Related Videos==
 +
 +
{{#ev:youtube|v=Fg7_mv3izR0|280|center|Matrix Inverse}}
 +
 +
==See Also==
 +
*[[Manuals/calci/MATRIXOPERATORS| MATRIXOPERATORS]]
 +
*[[Manuals/calci/MATRIXDETERMINANT| MATRIXDETERMINANT]]
 +
*[[Manuals/calci/DET| DET]]
 +
 +
==References==
 +
*[https://en.wikipedia.org/wiki/Invertible_matrix Matrix Inverse]
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 13:55, 12 April 2019

MATRIXINVERSE (a)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} is any matrix.

Description

  • This function shows the inverse value of the given matrix.
  • In Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle MATRIXINVERSE (a)} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} is any square matrix.
  • Inverse of a square matrix is also called reciprocal of a matrix and it is denoted by .
  • Consider the square matrix A has an inverse which should satisfies the following condition Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |A|\ne 0}
  • Also Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle AA^{-1}=I} (Identity matrix).
  • Consider 2x2 matrix:A=[a b;c d].
  • The inverse of matrix A is calculated by

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^{-1}={\begin{bmatrix} a & b \\ c & d \end{bmatrix}}^{-1}} =Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{det A }\begin{bmatrix} d & -b \\ -c & a \end{bmatrix}} =Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}}

  • Consider 3x3 matrix A and its inverse is calculated by

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^{-1}={\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}}^{-1}} =Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{det A }{\begin{bmatrix} A & B & C \\ D & E & F \\ G & H & I \end{bmatrix}}^T } = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{det A } {\begin{bmatrix} A & D & G \\ B & E & H \\ C & F & I \end{bmatrix}}}

where A=(ei-fh); B=-(di-fg);C=(dh-eg); D=-(bi-ch); E=(ai-cg); F=-(ah-bg); G=(bf-ce)  H=-(af-cd);I=(ae-bd)

Examples

1. MATRIXINVERSE([4,7;2,6])

0.6 -0.7
-0.2 0.4

2. MATRIXINVERSE([1,2,3;0,1,4;5,6,0])

-24 18 5
20 -15 -4
-5 4 1

Related Videos

Matrix Inverse

See Also

References