Difference between revisions of "Manuals/calci/ATANH"

From ZCubes Wiki
Jump to navigation Jump to search
 
(7 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''ATANH(z)'''</div><br/>
+
<div style="font-size:30px">'''ATANH(Number)'''</div><br/>
* where z is any number between -1 and 1.
+
* Number is any value between -1 and 1.
 +
**ATANH() returns the inverse hyperbolic tangent of a number.
 +
 
 
==Description==
 
==Description==
  
 
*This function gives the Inverse Hyperbolic Tangent of a number.  
 
*This function gives the Inverse Hyperbolic Tangent of a number.  
*Here 'z' is  any between -1 and 1. ie -1<z<1
+
*Here 'z' is  any number between -1 and 1. ie <math>-1<z<1</math>
*Inverse Hyperbolic Tangent of a number is defined by <math>Atanh(z)=\frac{1}{2}log e(1+\frac{z}{1-z})</math>
+
*Inverse Hyperbolic Tangent of a number is defined by <math>Atanh(z)=\frac{1}{2}\log_e(\frac{1+z}{1-z})</math>
*TANH(-z)=-TANH(z)
+
*TANH(-z)=-TANH(z). Also ATANH(TANH(z))=z
 
*ATANH(1)=Infinty
 
*ATANH(1)=Infinty
  
Line 17: Line 19:
 
|- class="even"
 
|- class="even"
 
|'''ATANH(z)'''
 
|'''ATANH(z)'''
|'''Value(Radian)'''
+
|'''Value'''
  
 
|- class="odd"
 
|- class="odd"
Line 31: Line 33:
 
| 0.309519604
 
| 0.309519604
 
|}
 
|}
 +
 +
==Related Videos==
 +
 +
{{#ev:youtube|vfOWS8Y_rQw|280|center|Inverse Hyperbolic TAN}}
  
 
==See Also==
 
==See Also==
Line 43: Line 49:
 
*[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions]
 
*[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions]
 
*[http://en.wikipedia.org/wiki/Hyperbolic_function  Hyperbolic Function]
 
*[http://en.wikipedia.org/wiki/Hyperbolic_function  Hyperbolic Function]
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 17:15, 18 June 2018

ATANH(Number)


  • Number is any value between -1 and 1.
    • ATANH() returns the inverse hyperbolic tangent of a number.

Description

  • This function gives the Inverse Hyperbolic Tangent of a number.
  • Here 'z' is any number between -1 and 1. ie
  • Inverse Hyperbolic Tangent of a number is defined by
  • TANH(-z)=-TANH(z). Also ATANH(TANH(z))=z
  • ATANH(1)=Infinty

Examples

ATANH(z)

  • z is any real number between -1 & 1.
ATANH(z) Value
ATANH(0.1) 0.100353477
ATANH(0.75) 0.97295507
ATANH(-0.3) 0.309519604

Related Videos

Inverse Hyperbolic TAN

See Also

References