Difference between revisions of "Manuals/calci/ATANH"
Jump to navigation
Jump to search
(7 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | <div style="font-size:30px">'''ATANH( | + | <div style="font-size:30px">'''ATANH(Number)'''</div><br/> |
− | * | + | * Number is any value between -1 and 1. |
+ | **ATANH() returns the inverse hyperbolic tangent of a number. | ||
+ | |||
==Description== | ==Description== | ||
*This function gives the Inverse Hyperbolic Tangent of a number. | *This function gives the Inverse Hyperbolic Tangent of a number. | ||
− | *Here 'z' is any between -1 and 1. ie -1<z<1 | + | *Here 'z' is any number between -1 and 1. ie <math>-1<z<1</math> |
− | *Inverse Hyperbolic Tangent of a number is defined by <math>Atanh(z)=\frac{1}{2} | + | *Inverse Hyperbolic Tangent of a number is defined by <math>Atanh(z)=\frac{1}{2}\log_e(\frac{1+z}{1-z})</math> |
− | *TANH(-z)=-TANH(z) | + | *TANH(-z)=-TANH(z). Also ATANH(TANH(z))=z |
*ATANH(1)=Infinty | *ATANH(1)=Infinty | ||
Line 17: | Line 19: | ||
|- class="even" | |- class="even" | ||
|'''ATANH(z)''' | |'''ATANH(z)''' | ||
− | |'''Value | + | |'''Value''' |
|- class="odd" | |- class="odd" | ||
Line 31: | Line 33: | ||
| 0.309519604 | | 0.309519604 | ||
|} | |} | ||
+ | |||
+ | ==Related Videos== | ||
+ | |||
+ | {{#ev:youtube|vfOWS8Y_rQw|280|center|Inverse Hyperbolic TAN}} | ||
==See Also== | ==See Also== | ||
Line 43: | Line 49: | ||
*[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions] | *[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions] | ||
*[http://en.wikipedia.org/wiki/Hyperbolic_function Hyperbolic Function] | *[http://en.wikipedia.org/wiki/Hyperbolic_function Hyperbolic Function] | ||
+ | |||
+ | |||
+ | |||
+ | *[[Z_API_Functions | List of Main Z Functions]] | ||
+ | |||
+ | *[[ Z3 | Z3 home ]] |
Latest revision as of 16:15, 18 June 2018
ATANH(Number)
- Number is any value between -1 and 1.
- ATANH() returns the inverse hyperbolic tangent of a number.
Description
- This function gives the Inverse Hyperbolic Tangent of a number.
- Here 'z' is any number between -1 and 1. ie
- Inverse Hyperbolic Tangent of a number is defined by
- TANH(-z)=-TANH(z). Also ATANH(TANH(z))=z
- ATANH(1)=Infinty
Examples
ATANH(z)
- z is any real number between -1 & 1.
ATANH(z) | Value |
ATANH(0.1) | 0.100353477 |
ATANH(0.75) | 0.97295507 |
ATANH(-0.3) | 0.309519604 |
Related Videos
See Also
References