Difference between revisions of "Manuals/calci/COTH"
Jump to navigation
Jump to search
(4 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | <div style="font-size:30px">'''COTH( | + | <div style="font-size:30px">'''COTH(x)'''</div><br/> |
− | * where | + | * where x is any real number. |
+ | **COTH() returns the inverse hyperbolic tangent of a number. | ||
+ | |||
==Description== | ==Description== | ||
− | *This function gives the hyperbolic Cotangent of ' | + | *This function gives the hyperbolic Cotangent of 'x'. |
*It's also called as Circular function. | *It's also called as Circular function. | ||
+ | *Let z is any real number. | ||
*COTH is the reciprocal of TANH function.i.e.COTH(z)=<math>(tanh (z))^{-1}</math> | *COTH is the reciprocal of TANH function.i.e.COTH(z)=<math>(tanh (z))^{-1}</math> | ||
*<math>COTH(z)=\frac{Cosh(z)}{Sinh(z)}</math> i.e <math>\frac {e^z+e^{-z}} {e^z-e^{-z}}</math> or iCOT(iz).where 'i' is the imaginary unit and <math>i=\sqrt{-1}</math>. | *<math>COTH(z)=\frac{Cosh(z)}{Sinh(z)}</math> i.e <math>\frac {e^z+e^{-z}} {e^z-e^{-z}}</math> or iCOT(iz).where 'i' is the imaginary unit and <math>i=\sqrt{-1}</math>. | ||
Line 10: | Line 13: | ||
== Examples == | == Examples == | ||
− | '''COTH( | + | '''COTH(x)''' |
− | *''' | + | *'''x''' is any real number. |
{|id="TABLE1" class="SpreadSheet blue" | {|id="TABLE1" class="SpreadSheet blue" | ||
|- class="even" | |- class="even" | ||
− | |'''COTH( | + | |'''COTH(x)''' |
|'''Value''' | |'''Value''' | ||
Line 31: | Line 34: | ||
| -1 | | -1 | ||
|} | |} | ||
+ | |||
+ | ==Related Videos== | ||
+ | |||
+ | {{#ev:youtube|EmJKuQBEdlc|280|center|Hyperbolic COT}} | ||
==See Also== | ==See Also== | ||
Line 44: | Line 51: | ||
*[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions] | *[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions] | ||
*[http://en.wikipedia.org/wiki/Hyperbolic_function Hyperbolic Function] | *[http://en.wikipedia.org/wiki/Hyperbolic_function Hyperbolic Function] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | *[[Z_API_Functions | List of Main Z Functions]] | ||
+ | |||
+ | *[[ Z3 | Z3 home ]] |
Latest revision as of 16:31, 18 June 2018
COTH(x)
- where x is any real number.
- COTH() returns the inverse hyperbolic tangent of a number.
Description
- This function gives the hyperbolic Cotangent of 'x'.
- It's also called as Circular function.
- Let z is any real number.
- COTH is the reciprocal of TANH function.i.e.COTH(z)=
- i.e or iCOT(iz).where 'i' is the imaginary unit and .
- Also relation between Hyperbolic & Trignometric function is &
Examples
COTH(x)
- x is any real number.
COTH(x) | Value |
COTH(1) | 1.3130352854993312 |
COTH(30) | 1 |
COTH(-45) | -1 |
Related Videos
See Also
References