Difference between revisions of "Manuals/calci/CHIDIST"

 
(12 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''CHIDIST(x,df)'''</div><br/>
+
<div style="font-size:30px">'''CHIDIST (Number,DegreeOfFreedom)'''</div><br/>
  
*<math>x</math> is the value for which distribution is evaluated.
+
*<math>Number</math> is the value for which distribution is evaluated.
*<math>df</math> is the number of degrees of freedom.
+
*<math>Degreeoffreedom</math> is the number of degrees of freedom.
 +
**CHIDIST(), returns the one-tailed probability of the chi-squared distribution.
  
 
==Description==
 
==Description==
Line 15: Line 16:
 
*The test statistic is:
 
*The test statistic is:
 
<math>\chi^2=\sum\frac{(Oi-Ei)^2}{Ei}</math>
 
<math>\chi^2=\sum\frac{(Oi-Ei)^2}{Ei}</math>
The degrees of freedom are: <math>(r–1)(c–1)</math>
+
The degrees of freedom is: (r–1)(c–1)
 
*r = No. of rows
 
*r = No. of rows
 
*c = No. of columns
 
*c = No. of columns
Line 23: Line 24:
  
 
Also this function will the result as Error when
 
Also this function will the result as Error when
#The <math>x</math> & <math>df</math> values are non-numeric
+
#The <math>Number</math> & <math>Degreeoffreedom</math> values are non-numeric
#The <math>x</math> value is negative or <math>df</math> value is not an integer
+
#The <math>Number</math> value is negative or <math>Degreeoffreedom</math> value is not an integer
#The <math>df < 1</math> or <math>df > 10^{10}</math>
+
#The <math>Degreeoffreedom < 1</math> or <math>Degreeoffreedom > 10^{10}</math>
 
#Here  CHIDIST=P(X>x),where X is a <math>\chi^2</math> random variable.  
 
#Here  CHIDIST=P(X>x),where X is a <math>\chi^2</math> random variable.  
  
*CHIDIST(-2,1)=Error, because x is negative.
+
*CHIDIST(-2,1)=Error, because Number is negative.
*CHIDIST(2,-1)=Error, because df<1
+
*CHIDIST(2,-1)=Error, because Degreeoffreedom<1
 +
 
 +
==ZOS==
 +
*The syntax is to calculate CHIDIST in ZOS is CHIDIST(Number,Degreeoffreedom).
 +
*<math>Number</math> is the value for which distribution is evaluated.
 +
*<math>Degreeoffreedom</math> is the number of degrees of freedom.
 +
*For e.g.,CHIDIST(10..12,5.1..7.1..0.6)
 +
{{#ev:youtube|44cEta1FnA4|280|center|Chi-squared Distribution}}
  
 
==Examples==
 
==Examples==
 
{| id="TABLE3" class="SpreadSheet blue"
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
|- class="even"
| CHIDIST(x,df)
+
| CHIDIST(Number,Degreeoffreedom)
 
! x
 
! x
 
! df
 
! df
Line 58: Line 66:
 
| -2
 
| -2
 
|1
 
|1
|error
+
|#N/A (NUMBER > 0)
 
|- class="odd"
 
|- class="odd"
 
|CHIDIST(2,-1)
 
|CHIDIST(2,-1)
 
|2                                       
 
|2                                       
 
| -1
 
| -1
|error
+
|null
 
|}
 
|}
 +
 +
==Related Videos==
 +
 +
{{#ev:youtube|dXB3cUGnaxQ|280|center|Chi-Square Distribution}}
  
 
==See Also==
 
==See Also==
 
 
*[[Manuals/calci/CHITEST | CHITEST]]
 
*[[Manuals/calci/CHITEST | CHITEST]]
  
 
==References==
 
==References==
 
[http://en.wikipedia.org/wiki/Chi-squared_distribution  CHI-SQUARE Distribution]
 
[http://en.wikipedia.org/wiki/Chi-squared_distribution  CHI-SQUARE Distribution]
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 08:50, 2 June 2020

CHIDIST (Number,DegreeOfFreedom)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Number} is the value for which distribution is evaluated.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Degreeoffreedom} is the number of degrees of freedom.
    • CHIDIST(), returns the one-tailed probability of the chi-squared distribution.

Description

  • This function gives the one_tailed probability of the chi-squared distribution.
  • It is denoted by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi^2} distribution.
  • Normally categorical data's may displayed in tables.
  • The Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi^2} static used to compare the observed value in each table to the assumed value.
  • The conditions of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi^2} test is
  1. The table should be 2x2 or more than 2x2
  2. Each observations should not be dependent
  3. All expected values should be 10 or greater.
  • The test statistic is:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi^2=\sum\frac{(Oi-Ei)^2}{Ei}} The degrees of freedom is: (r–1)(c–1)

  • r = No. of rows
  • c = No. of columns

Where:

  • Oi-the observed value in the ith cell
  • Ei- the expected value in the ith cell

Also this function will the result as Error when

  1. The   & Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Degreeoffreedom} values are non-numeric
  2. The Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Number} value is negative or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Degreeoffreedom} value is not an integer
  3. The Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Degreeoffreedom < 1} or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Degreeoffreedom > 10^{10}}
  4. Here CHIDIST=P(X>x),where X is a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi^2} random variable.
  • CHIDIST(-2,1)=Error, because Number is negative.
  • CHIDIST(2,-1)=Error, because Degreeoffreedom<1

ZOS

  • The syntax is to calculate CHIDIST in ZOS is CHIDIST(Number,Degreeoffreedom).
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Number} is the value for which distribution is evaluated.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Degreeoffreedom} is the number of degrees of freedom.
  • For e.g.,CHIDIST(10..12,5.1..7.1..0.6)
Chi-squared Distribution

Examples

CHIDIST(Number,Degreeoffreedom) x df RESULT
CHIDIST(18,2) 18 2 0.0001234098
CHIDIST(15,1) 15 1 0.0001075112
CHIDIST(2,1) 2 1 0.157299207050
CHIDIST(-2,1) -2 1 #N/A (NUMBER > 0)
CHIDIST(2,-1) 2 -1 null

Related Videos

Chi-Square Distribution

See Also

References

CHI-SQUARE Distribution