Difference between revisions of "Manuals/calci/SINH"

From ZCubes Wiki
Jump to navigation Jump to search
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
<div style="font-size:30px">'''SINH(z)'''</div><br/>
+
<div style="font-size:30px">'''SINH(x)'''</div><br/>
* where z is any real number
+
* where x is any real number.
 +
**SINH(), returns the hyperbolic sine of a number
 +
 
 +
 
 
==Description==
 
==Description==
  
*This function gives the Hyperbolic SIN of 'z'.
+
*This function gives the Hyperbolic SIN of 'x'.
 
*It's also called as Circular function.
 
*It's also called as Circular function.
*Here <math>SINH(z)=\frac{e^z-e^{-z}}{2}</math> or <math>-iSIN(iz)</math>, where <math>i</math> is the imaginary unit and <math>i=\sqrt{-1}</math>
+
*Here <math>SINH(x)=\frac{e^x-e^{-x}}{2}</math> or <math>-iSIN(ix)</math>, where <math>i</math> is the imaginary unit and <math>i=\sqrt{-1}</math>
*The relation between Hyperbolic & Trigonometric function is <math>Sin(iz)=iSinh(z)</math> & <math>Sinh(iz)= iSin(z)</math>
+
*The relation between Hyperbolic & Trigonometric function is <math>Sin(ix)=iSinh(x)</math> & <math>Sinh(ix)= iSin(x)</math>
*SINH(-z) = -SINH(z)
+
*SINH(-x) = -SINH(x)
  
 
== Examples ==
 
== Examples ==
'''SINH(z)'''
+
'''SINH(x)'''
*'''z''' is any real number.
+
*'''x''' is any real number.
  
 
{|id="TABLE1" class="SpreadSheet blue"
 
{|id="TABLE1" class="SpreadSheet blue"
  
 
|- class="even"
 
|- class="even"
|'''SINH(z)'''
+
|'''SINH(x)'''
 
|'''Value '''
 
|'''Value '''
  
Line 48: Line 51:
 
*[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions]
 
*[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions]
 
*[http://en.wikipedia.org/wiki/Hyperbolic_function  Hyperbolic Function]
 
*[http://en.wikipedia.org/wiki/Hyperbolic_function  Hyperbolic Function]
 +
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 15:26, 3 July 2018

SINH(x)


  • where x is any real number.
    • SINH(), returns the hyperbolic sine of a number


Description

  • This function gives the Hyperbolic SIN of 'x'.
  • It's also called as Circular function.
  • Here or , where is the imaginary unit and
  • The relation between Hyperbolic & Trigonometric function is &
  • SINH(-x) = -SINH(x)

Examples

SINH(x)

  • x is any real number.
SINH(x) Value
SINH(0) 0
SINH(10) 11013.23287
SINH(-3) -10.0178749274099

Related Videos

Hyperbolic SIN

See Also

References