Difference between revisions of "Manuals/calci/LISTPRIMES"

From ZCubes Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''LISTPRIMES(max,min,Index)'''</div><br/>
+
<div style="font-size:30px">'''LISTPRIMES (Max,Min,IndexOnly)'''</div><br/>
*<math>max</math> is the upper limit.  
+
*<math>Max</math> is the upper limit.  
*<math>min</math> is the lower limit.
+
*<math>Min</math> is the lower limit.
*<math>Index</math> is the specified position of a prime number.
+
*<math>IndexOnly</math> is the specified position of a prime number.
 +
**LISTPRIMES(),returns the list of prime numbers from given range
  
 
==Description==
 
==Description==
Line 10: Line 11:
 
*But 6 is not prime, because 6 can be divided by 1,2,3 and 6. Such numbers are called composite numbers.  
 
*But 6 is not prime, because 6 can be divided by 1,2,3 and 6. Such numbers are called composite numbers.  
 
*Also the number 0 and 1 are neither prime nor composite.  
 
*Also the number 0 and 1 are neither prime nor composite.  
*In <math> LISTPRIMES(max,min,Index)</math>, gives the list of prime numbers between the range <math> max </math> and <math>min</math>.
+
*In <math> LISTPRIMES(Max,Min,IndexOnly)</math>, gives the list of prime numbers between the range <math> max </math> and <math>min</math>.
*<math>max </math> is the upper limit value and <math> min</math> is the lower limit value  
+
*<math>Max </math> is the upper limit value and <math>Min</math> is the lower limit value  
*And <math>Index</math> is the position of the prime number value. <math>Index</math> value is optional.  
+
*And <math>IndexOnly</math> is the position of the prime number value. <math>IndexOnly</math> value is optional.  
 
*Suppose we are not giving the Index value, it will show all the prime numbers in given range.  
 
*Suppose we are not giving the Index value, it will show all the prime numbers in given range.  
 
*This function will give the result as error when
 
*This function will give the result as error when
 
# Any one of the argument is nonnumeric.
 
# Any one of the argument is nonnumeric.
#<math> max < min </math> or <math>Index </math> is the beyond the range number of prime numbers
+
#<math> Max < Min </math> or <math>IndexOnly </math> is the beyond the range number of prime numbers
#<math>max </math> or <math> min<0</math>.
+
#<math>Max </math> or <math> Min<0</math>.
  
 
==ZOS==
 
==ZOS==
*The syntax is to display the prime numbers list in ZOS is <math>LISTPRIMES(max,min,Index)</math>.
+
*The syntax is to display the prime numbers list in ZOS is <math>LISTPRIMES(Max,Min,IndexOnly)</math>.
**<math>max</math> is the upper limit.  
+
**<math>Max</math> is the upper limit.  
**<math>min</math> is the lower limit.
+
**<math>Min</math> is the lower limit.
**<math>Index</math> is the specified  position of a prime number.
+
**<math>IndexOnly</math> is the specified  position of a prime number.
 
*For e.g.,LISTPRIMES(500,390,7)
 
*For e.g.,LISTPRIMES(500,390,7)
 
{{#ev:youtube|CxMBgoBSxCg|280|center|Listing Prime Numbers}}
 
{{#ev:youtube|CxMBgoBSxCg|280|center|Listing Prime Numbers}}
Line 35: Line 36:
 
#=LISTPRIMES(90,70) = 71    73      79      83    89
 
#=LISTPRIMES(90,70) = 71    73      79      83    89
 
#=LISTPRIMES(90,70,4) = 83
 
#=LISTPRIMES(90,70,4) = 83
#=LISTPRIMES(90,70,6) = Null
+
#=LISTPRIMES(90,70,6) = undefined
  
 
==Related Videos==
 
==Related Videos==
Line 48: Line 49:
 
==References==
 
==References==
 
[http://en.wikipedia.org/wiki/List_of_prime_numbers Prime Numbers]
 
[http://en.wikipedia.org/wiki/List_of_prime_numbers Prime Numbers]
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 04:49, 8 June 2020

LISTPRIMES (Max,Min,IndexOnly)


  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Max} is the upper limit.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Min} is the lower limit.
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle IndexOnly} is the specified position of a prime number.
    • LISTPRIMES(),returns the list of prime numbers from given range

Description

  • This function is listing the set of prime numbers for the given set of numbers.
  • A prime number is a natural number, it can be divided, without a remainder, only by itself and by 1.
  • For e.g. the number 11 is a prime, because 11 is divided by 1 and 11 without any remainder.
  • But 6 is not prime, because 6 can be divided by 1,2,3 and 6. Such numbers are called composite numbers.
  • Also the number 0 and 1 are neither prime nor composite.
  • In Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle LISTPRIMES(Max,Min,IndexOnly)} , gives the list of prime numbers between the range Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle max } and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle min} .
  • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Max } is the upper limit value and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Min} is the lower limit value
  • And Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle IndexOnly} is the position of the prime number value. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle IndexOnly} value is optional.
  • Suppose we are not giving the Index value, it will show all the prime numbers in given range.
  • This function will give the result as error when
  1. Any one of the argument is nonnumeric.
  2. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Max < Min } or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle IndexOnly } is the beyond the range number of prime numbers
  3. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Max } or Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Min<0} .

ZOS

  • The syntax is to display the prime numbers list in ZOS is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle LISTPRIMES(Max,Min,IndexOnly)} .
    • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Max} is the upper limit.
    • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Min} is the lower limit.
    • Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle IndexOnly} is the specified position of a prime number.
  • For e.g.,LISTPRIMES(500,390,7)
Listing Prime Numbers

Examples

  1. =LISTPRIMES(20,11) = 11 13 17 19
  2. =LISTPRIMES(20,11,3) = 17
  3. =LISTPRIMES(150,130) = 131,137,139,149
  4. =LISTPRIMES(10,-1) = 2 3 5 7
  5. =LISTPRIMES(-10,1) = Null
  6. =LISTPRIMES(90,70) = 71 73 79 83 89
  7. =LISTPRIMES(90,70,4) = 83
  8. =LISTPRIMES(90,70,6) = undefined

Related Videos

PRIME NUMBERS

See Also

References

Prime Numbers