Difference between revisions of "Manuals/calci/MATRIXADJOINT"

From ZCubes Wiki
Jump to navigation Jump to search
 
(2 intermediate revisions by the same user not shown)
Line 57: Line 57:
 
\end{vmatrix} \\
 
\end{vmatrix} \\
 
\end{pmatrix}</math>
 
\end{pmatrix}</math>
 +
 +
==Examples==
 +
1. MATRIXADJOINT([4]) = 1
 +
 +
2.MATRIXADJOINT([2,3;7,8])
 +
{| class="wikitable"
 +
|-
 +
| 8 ||-3
 +
|-
 +
| -7|| 2
 +
|}
 +
3.MATRIXADJOINT([-6,12,5;3,-2,9;8,3,3])
 +
{| class="wikitable"
 +
|-
 +
| -33 ||-21 || 118
 +
|-
 +
| 63 || -58 || 69
 +
|-
 +
| 24.999999999999996|| 114 || -24
 +
|}
 +
 +
 +
==Related Videos==
 +
 +
{{#ev:youtube|v=oHzpMgKuI9Q&t=7s|280|center|Matrix Adjoint}}
 +
 +
==See Also==
 +
*[[Manuals/calci/ADJ  | ADJ]]
 +
*[[Manuals/calci/MINVERSE  | MINVERSE ]]
 +
*[[Manuals/calci/MMULT  | MMULT ]]
 +
 +
==References==
 +
*[https://en.wikipedia.org/wiki/Adjugate_matrix Adjugate matrix]
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 14:26, 12 April 2019

MATRIXADJOINT (a)


  • is any set of values.

Description

  • This function shows the Adjoint of a given matrix.
  • In , is the set of matrix values.
  • Adjoint of a matrix is called adjugate, classical adjoint, or adjunct.
  • Adjoint of a matrix formed by taking the transpose of the cofactor matrix of a given original Square matrix.
  • Adjoint of matrix A is written by .
  • The adjugate of A is the transpose of the cofactor matrix C of A, .
  • Also adjoint of a matrix is defined by .
  • The adjugate of 1x1 matrix is .
  • The adjugate of 2x2 matrix is .
  • Consider3x3 matrix .
  • Its adjugate is the transpose of its cofactor matrix:

Examples

1. MATRIXADJOINT([4]) = 1

2.MATRIXADJOINT([2,3;7,8])

8 -3
-7 2

3.MATRIXADJOINT([-6,12,5;3,-2,9;8,3,3])

-33 -21 118
63 -58 69
24.999999999999996 114 -24


Related Videos

Matrix Adjoint

See Also

References