Difference between revisions of "Manuals/calci/LUDECOMPOSITION"
Jump to navigation
Jump to search
(Created page with "<div style="font-size:30px">'''LUDECOMPOSITION (Matrix) '''</div><br/> *<math>Matrix</math> is the set of values. ==Description== *This function gives the value of LU Decompo...") |
|||
| (25 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| − | <div style="font-size: | + | <div style="font-size:25px">'''LUDECOMPOSITION (Matrix)'''</div><br/> |
*<math>Matrix</math> is the set of values. | *<math>Matrix</math> is the set of values. | ||
| Line 6: | Line 6: | ||
*In <math>LUDECOMPOSITION (Matrix)</math>, <math>Matrix</math> is any square matrix. | *In <math>LUDECOMPOSITION (Matrix)</math>, <math>Matrix</math> is any square matrix. | ||
*LU Decomposition is the procedure for decomposing any square matrix in to a product of Lower Triangular matrix and Upper Triangular matrix. | *LU Decomposition is the procedure for decomposing any square matrix in to a product of Lower Triangular matrix and Upper Triangular matrix. | ||
| − | *In LU Decomposition,L stands for Lower Triangular matrix and U stands for Upper Triangular matrix. | + | *In LU Decomposition, L stands for Lower Triangular matrix and U stands for Upper Triangular matrix. |
| − | *So A=LU.But sometimes the product includes Permutation Matrix also. | + | *So A=LU.But sometimes the product includes Permutation Matrix also(PA=LU). |
*LU Decomposition is also called LU Factorization.Here given matrix is split in to lower triangular and Upper triangular matrix. | *LU Decomposition is also called LU Factorization.Here given matrix is split in to lower triangular and Upper triangular matrix. | ||
| − | *For 2x2 matrix, | + | **For 2x2 matrix, |
| − | \begin{bmatrix} | + | <math>\begin{bmatrix} |
a_{11} & a_{12} \\ | a_{11} & a_{12} \\ | ||
a_{21}& a_{22} | a_{21}& a_{22} | ||
| Line 17: | Line 17: | ||
l_{21}& l_{22} | l_{21}& l_{22} | ||
\end{bmatrix}\begin{bmatrix} | \end{bmatrix}\begin{bmatrix} | ||
| − | u_{ | + | u_{11} & u_{12} \\ |
0 & u_{22} | 0 & u_{22} | ||
| − | \end{bmatrix} | + | \end{bmatrix}</math> |
*For 3x3 matrix, | *For 3x3 matrix, | ||
| + | <math>\begin{bmatrix} | ||
| + | a_{11} & a_{12} & a_{13} \\ | ||
| + | a_{21}& a_{22} & a_{23}\\ | ||
| + | a_{31} & a_{32} & a_{33} | ||
| + | \end{bmatrix}=\begin{bmatrix} | ||
| + | l_{11} & 0 &0 \\ | ||
| + | l_{21}& l_{22} &0 \\ | ||
| + | l_{31}& l_{32} & l_{33} | ||
| + | \end{bmatrix}\begin{bmatrix} | ||
| + | u_{11} & u_{12} &u_{13} \\ | ||
| + | 0 & u_{22} &u_{23} \\ | ||
| + | 0 & 0 & u_{33} | ||
| + | \end{bmatrix}</math> | ||
| + | |||
| + | ==Examples== | ||
| + | {| class="wikitable" | ||
| + | |+Spreadsheet | ||
| + | |- | ||
| + | ! !! A !! B | ||
| + | |- | ||
| + | ! 1 | ||
| + | | 4 || 3 | ||
| + | |- | ||
| + | !2 | ||
| + | |6 || 3 | ||
| + | |} | ||
| + | =LUDECOMPOSITION(A1:B2) | ||
| + | {| border="1" cellpadding="5" cellspacing="0" | ||
| + | |- | ||
| + | | | ||
| + | 1 0 | ||
| + | || | ||
| + | 0.6666666666666666 1 | ||
| + | |- | ||
| + | | | ||
| + | 6 3 | ||
| + | || | ||
| + | 0 1 | ||
| + | |- | ||
| + | | | ||
| + | 0 1 | ||
| + | || | ||
| + | 1 0 | ||
| + | |} | ||
| + | |||
| + | {| class="wikitable" | ||
| + | |+Spreadsheet | ||
| + | |- | ||
| + | ! !! A !! B !! C | ||
| + | |- | ||
| + | ! 1 | ||
| + | | 1 || 2 || 3 | ||
| + | |- | ||
| + | ! 2 | ||
| + | | 4 || 5 || 6 | ||
| + | |- | ||
| + | ! 3 | ||
| + | | 7 || 8 || 9 | ||
| + | |} | ||
| + | =LUDECOMPOSITION(A1:C3) | ||
| + | {| border="1" cellpadding="5" cellspacing="0" | ||
| + | |- | ||
| + | | | ||
| + | 1 0 0 | ||
| + | || | ||
| + | 0.5714285714285714 1 0 | ||
| + | || | ||
| + | 0.14285714285714285 1.999999999999999 1 | ||
| + | |- | ||
| + | | | ||
| + | 7 8 9 | ||
| + | || | ||
| + | 0 0.4285714285714288 0.8571428571428577 | ||
| + | || | ||
| + | 0 0 0 | ||
| + | |- | ||
| + | | | ||
| + | 0 0 1 | ||
| + | || | ||
| + | 0 1 0 | ||
| + | || | ||
| + | 1 0 0 | ||
| + | |} | ||
| + | |||
| + | ==Related Videos== | ||
| + | |||
| + | {{#ev:youtube|v=UlWcofkUDDU|280|center|LU Decomposition}} | ||
| + | |||
| + | ==See Also== | ||
| + | *[[Manuals/calci/CHOLESKYFACTORIZATION| CHOLESKYFACTORIZATION]] | ||
| + | *[[Manuals/calci/CONFERENCE| CONFERENCE]] | ||
| + | *[[Manuals/calci/PASCAL| PASCAL]] | ||
| + | |||
| + | ==References== | ||
| + | *[https://en.wikipedia.org/wiki/LU_decomposition LU Decomposition] | ||
| + | |||
| + | *[[Z_API_Functions | List of Main Z Functions]] | ||
| + | |||
| + | *[[ Z3 | Z3 home ]] | ||
Latest revision as of 12:30, 29 April 2019
LUDECOMPOSITION (Matrix)
- is the set of values.
Description
- This function gives the value of LU Decomposition of a given matrix.
- In , is any square matrix.
- LU Decomposition is the procedure for decomposing any square matrix in to a product of Lower Triangular matrix and Upper Triangular matrix.
- In LU Decomposition, L stands for Lower Triangular matrix and U stands for Upper Triangular matrix.
- So A=LU.But sometimes the product includes Permutation Matrix also(PA=LU).
- LU Decomposition is also called LU Factorization.Here given matrix is split in to lower triangular and Upper triangular matrix.
- For 2x2 matrix,
- For 3x3 matrix,
Examples
| A | B | |
|---|---|---|
| 1 | 4 | 3 |
| 2 | 6 | 3 |
=LUDECOMPOSITION(A1:B2)
1 0 |
0.6666666666666666 1 |
6 3 |
0 1 |
0 1 |
1 0 |
| A | B | C | |
|---|---|---|---|
| 1 | 1 | 2 | 3 |
| 2 | 4 | 5 | 6 |
| 3 | 7 | 8 | 9 |
=LUDECOMPOSITION(A1:C3)
1 0 0 |
0.5714285714285714 1 0 |
0.14285714285714285 1.999999999999999 1 |
7 8 9 |
0 0.4285714285714288 0.8571428571428577 |
0 0 0 |
0 0 1 |
0 1 0 |
1 0 0 |