Difference between revisions of "ZCubes/Devil's Primes"

From ZCubes Wiki
Jump to navigation Jump to search
 
(One intermediate revision by one other user not shown)
Line 5: Line 5:
 
==Video==
 
==Video==
 
<br/>
 
<br/>
{{#ev:youtube|_0N7c5JnKT8|480|left|Devil Primes}}
+
{{#ev:youtube|_0N7c5JnKT8|480|left|Devil's Primes}}
 
<br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/>
 
<br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/><br/>
  
Line 17: Line 17:
 
   .filter(r=>r[1][0]))
 
   .filter(r=>r[1][0]))
  
<<[[Main_Page | About ZCubes ]]
+
<br/>
 
+
*[[Z3 | Z3 home]]
 
+
*[[Z^3 Language Documentation]]
 +
*[[ZCubes_Videos | ZCubes Videos and Tutorials]]
 +
*[[Main_Page | About ZCubes ]]  
 +
<br/>
 
<br/>
 
<br/>
 
&copy; Copyright 1996-2021, ZCubes, Inc.
 
&copy; Copyright 1996-2021, ZCubes, Inc.

Latest revision as of 04:05, 22 September 2021

Devil's Primes


This video computes the devil's primes, for example, the number 16661, 1 followed by thirteen 0s then 666 and then thirteen 0s and then ending with 1. These are called devil's prime due to common beliefs around the numbers 666 and 13 etc. Z has a built-in function to check if a number is a prime number and also can deal with large integer computations. This ability opens up our capability to discover interesting numbers and patterns and their specialties.

Video


Devil's Primes














Code-Devil's Primes

ISPRIME(1000000000000066600000000000001<>n)
ops.on;
(n=>(((10n^(n+1)+(666))*(10n^(n-1)))+1))@1..20
(n=>(((10n^(n+1)+(666))*(10n^(n-1)))+1))@2..200
a.map((x,i)=>([i,ISPRIME(x)]))
  .filter(r=>r[1][0]))




© Copyright 1996-2021, ZCubes, Inc.