Difference between revisions of "Manuals/calci/COTH"
Jump to navigation
Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> COTH(SomeNumber) where '''SomeNumber''' is any real number </div> ---- <div id="1SpaceContent" class="zconte...") |
|||
| (12 intermediate revisions by 4 users not shown) | |||
| Line 1: | Line 1: | ||
| − | <div | + | <div style="font-size:30px">'''COTH(x)'''</div><br/> |
| + | * where x is any real number. | ||
| + | **COTH() returns the inverse hyperbolic tangent of a number. | ||
| − | + | ==Description== | |
| − | + | *This function gives the hyperbolic Cotangent of 'x'. | |
| + | *It's also called as Circular function. | ||
| + | *Let z is any real number. | ||
| + | *COTH is the reciprocal of TANH function.i.e.COTH(z)=<math>(tanh (z))^{-1}</math> | ||
| + | *<math>COTH(z)=\frac{Cosh(z)}{Sinh(z)}</math> i.e <math>\frac {e^z+e^{-z}} {e^z-e^{-z}}</math> or iCOT(iz).where 'i' is the imaginary unit and <math>i=\sqrt{-1}</math>. | ||
| + | *Also relation between Hyperbolic & Trignometric function is <math>Cot(iz)=-iCoth(z)</math> & <math>Coth(iz)=-iCot(z)</math> | ||
| − | + | == Examples == | |
| − | + | '''COTH(x)''' | |
| − | + | *'''x''' is any real number. | |
| − | + | {|id="TABLE1" class="SpreadSheet blue" | |
| − | + | |- class="even" | |
| − | - | + | |'''COTH(x)''' |
| − | + | |'''Value''' | |
| + | |||
| + | |- class="odd" | ||
| + | | COTH(1) | ||
| + | | 1.3130352854993312 | ||
| + | |||
| + | |- class="even" | ||
| + | | COTH(30) | ||
| + | | 1 | ||
| − | COTH | + | |- class="odd" |
| + | | COTH(-45) | ||
| + | | -1 | ||
| + | |} | ||
| − | + | ==Related Videos== | |
| − | |||
| − | |||
| − | + | {{#ev:youtube|EmJKuQBEdlc|280|center|Hyperbolic COT}} | |
| − | + | ==See Also== | |
| − | |||
| − | |||
| − | + | *[[Manuals/calci/SINH| SINH]] | |
| − | + | *[[Manuals/calci/COSH| COSH]] | |
| − | + | *[[Manuals/calci/TANH | TANH]] | |
| − | + | ==References== | |
| − | + | *[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions] | |
| + | *[http://en.wikipedia.org/wiki/Hyperbolic_function Hyperbolic Function] | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | *[[Z_API_Functions | List of Main Z Functions]] | |
| − | |||
| − | | | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | *[[ Z3 | Z3 home ]] | |
| − | |||
Latest revision as of 16:31, 18 June 2018
COTH(x)
- where x is any real number.
- COTH() returns the inverse hyperbolic tangent of a number.
Description
- This function gives the hyperbolic Cotangent of 'x'.
- It's also called as Circular function.
- Let z is any real number.
- COTH is the reciprocal of TANH function.i.e.COTH(z)=
- i.e or iCOT(iz).where 'i' is the imaginary unit and .
- Also relation between Hyperbolic & Trignometric function is &
Examples
COTH(x)
- x is any real number.
| COTH(x) | Value |
| COTH(1) | 1.3130352854993312 |
| COTH(30) | 1 |
| COTH(-45) | -1 |
Related Videos
See Also
References