Difference between revisions of "Manuals/calci/BESSELY"
Jump to navigation
Jump to search
Line 2: | Line 2: | ||
*<math>x</math> is the value at which to evaluate the function | *<math>x</math> is the value at which to evaluate the function | ||
*<math>n</math> is the integer which is the order of the Bessel Function | *<math>n</math> is the integer which is the order of the Bessel Function | ||
+ | |||
==Description== | ==Description== | ||
*This function gives the value of the modified Bessel function. | *This function gives the value of the modified Bessel function. | ||
Line 14: | Line 15: | ||
*This function will give the result as error when: | *This function will give the result as error when: | ||
1. <math>x</math> or <math>n</math> is non numeric | 1. <math>x</math> or <math>n</math> is non numeric | ||
− | 2. <math>n<0</math>, because <math>n</math> is the order of the function | + | 2. <math>n<0</math>, because <math>n</math> is the order of the function. |
+ | |||
+ | ==ZOS Section== | ||
+ | *The syntax is to calculate BESSELY in ZOS is <math>BESSELY(x,n)</math>. | ||
+ | **<math>x</math> is the value at which to evaluate the function | ||
+ | **<math>n</math> is the integer which is the order of the Bessel Function | ||
+ | |||
==Examples== | ==Examples== |
Revision as of 02:49, 12 June 2014
BESSELY(x,n)
- is the value at which to evaluate the function
- is the integer which is the order of the Bessel Function
Description
- This function gives the value of the modified Bessel function.
- Bessel functions is also called Cylinder Functions because they appear in the solution to Laplace's equation in cylindrical coordinates.
- Bessel's Differential Equation is defined as:
where is the arbitrary complex number.
- But in most of the cases is the non-negative real number.
- The solutions of this equation are called Bessel Functions of order .
- The Bessel function of the second kind and sometimes it is called Weber Function or the Neumann Function..
- The Bessel function of the 2nd kind of order can be expressed as:
- where is the Bessel functions of the first kind.
- This function will give the result as error when:
1. or is non numeric 2. , because is the order of the function.
ZOS Section
- The syntax is to calculate BESSELY in ZOS is .
- is the value at which to evaluate the function
- is the integer which is the order of the Bessel Function
Examples
- =BESSELY(2,3) = -1.127783765
- =BESSELY(0.7,4)= -132.6340573
- =BESSELY(9,1) = 0.104314575
- =BESSELY(2,-1) = NAN